2,220 research outputs found

    Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction

    Full text link
    Advanced synchrotron radiation focusing down to a size of 300 nm has been used to visualize nanoscale phase separation in the K0.8Fe1.6Se2 superconducting system using scanning nanofocus single-crystal X-ray diffraction. The results show an intrinsic phase separation in K0.8Fe1.6Se2 single crystals at T< 520 K, revealing coexistence of i) a magnetic phase characterized by an expanded lattice with superstructures due to Fe vacancy ordering and ii) a non-magnetic phase with an in-plane compressed lattice. The spatial distribution of the two phases at 300 K shows a frustrated or arrested nature of the phase separation. The space-resolved imaging of the phase separation permitted us to provide a direct evidence of nanophase domains smaller than 300 nm and different micrometer-sized regions with percolating magnetic or nonmagnetic domains forming a multiscale complex network of the two phases.Comment: 5 pages, 4 figure

    Direct observation of nanoscale interface phase in the superconducting chalcogenide Kx_{x}Fe2y_{2-y}Se2_2 with intrinsic phase separation

    Get PDF
    We have used scanning micro x-ray diffraction to characterize different phases in superconducting Kx_{x}Fe2y_{2-y}Se2_2 as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (Tc_c\sim32 K), phase separation temperature (Tps_{ps}\sim520 K) and iron-vacancy order temperature (Tvo_{vo}\sim580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below \sim300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the Tps_{ps} and Tc_c is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in Kx_{x}Fe2y_{2-y}Se2_2.Comment: 6 pages, 4 figure

    Spiral Density Waves in a Young Protoplanetary Disk

    Get PDF
    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.Comment: This is our own version of the manuscript, the definitive version was published in Science (DOI: 10.1126/science.aaf8296) on September 30, 2016. Posted to the arxiv for non-commercial us

    Bats Use Magnetite to Detect the Earth's Magnetic Field

    Get PDF
    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals
    corecore