4,025 research outputs found

    Use of IC information in Japanese financial firms

    Get PDF
    Purpose – The purpose of this paper is to explore the perceptions of: how Japanese financial firms (JFF) acquire and use company intellectual capital (IC) information in their common routine equity investment decisions, how this activity contributes to knowledge creation in the JFFs, and how investee company knowledge creation is affected by the JFFs.<p></p> Design/methodology/approach – The research employed a multi-case design, using four JFF cases. The investigation was performed in terms of Nonaka and Toyama's “theory of the knowledge creating firm”.<p></p> Findings – IC information contributed to earnings estimates and company valuation. Emotional information contributed to JFF feelings and confidence in their information use and valuation. JFF knowledge was an important component of the key interacting and informed contexts used by JFFs. This generated opportunities to improve disclosure and accountability between JFFs and their investee companies. Common patterns of behaviour across the JFFs were counterbalanced by variety and differences noted in JFF behaviour.<p></p> Practical implications – The findings provide important insights into how JFF knowledge creating patterns could limit or progress a common language of communication between companies and markets on the subject of IC. This could impact on the quality of corporate disclosure and accountability processes.<p></p> Originality/value – The paper demonstrates that there is a need for further use of qualitative studies of financial market behavior. Especially in the area of understanding the communication of IC between firms and financial markets, the potential of using sociology of finance approaches appears to be considerable

    Transport of Potential Microbial Source Tracking Markers in Sandy Material

    Get PDF
    ABSTRACT TRANSPORT OF POTENTIAL MICROBIAL SOURCE TRACKING MARKERS IN SANDY MATERIALS by Jennifer J. Johanson The University of Wisconsin-Milwaukee 2016 Under the Supervision of Professor Shangping Xu Groundwater, a primary source of drinking water for nearly half the people in the United States, can be contaminated by pathogenic bacteria from fecal materials causing outbreaks of waterborne illness. Therefore, early identification of the presence of fecal contamination in groundwater can help prevent such outbreaks, and determining whether bacteria originate from human or animal feces can narrow down the location of potential pollution sources, allowing timely remediation and reduced potential for future outbreaks. Pathogens are found in relatively low concentration in feces leading to difficulties in their detection in groundwater samples. In addition, a wide variety of pathogenic bacteria and viruses may exist in feces making it costly to analyze groundwater directly for all potential pathogens. As a result, groundwater samples are routinely analyzed for non-pathogenic fecal indicator bacteria (FIB), which are used as a proxy for the potential contamination by fecal pathogens. An ideal FIB would be abundant in the source material, easy and inexpensive to analyze, mobile in the subsurface so that it does not lag behind the pathogens, and host-specific to help identify the contaminant source. Bacteria which can be identified as originating selectively from human vs nonhuman sources (animals) are especially helpful in determining the source of contamination when multiple potential sources are present. Escherichia coli (E. coli) has long been used as a FIB due to its abundance in fecal matter. However E. coli is found in many different hosts, which limits its use for source identification. Recent research has focused on identifying microbial source tracking (MST) bacteria which have markers that are specific to human or animal hosts, and these host-specific markers can be critical in early source identification efforts. This potential for MST is especially promising if combined with the other characteristics of an ideal FIB, such as abundance and mobility in the subsurface. This research focuses on evaluating the subsurface mobility of two bacteria, Enterococcus faecium (E. faecium) and Bacteriodes fragilis (B. fragilis), in order to better understand their potential use as source-tracking FIB. These bacteria are both abundant in fecal matter and they have shown promise as having human-specific markers. We performed column experiments to compare their subsurface transport through sandy material. Bacteria with relatively high attachment to sand have lower mobility in groundwater and may therefore be less effective as early tracers of fecal contamination The first part of our research compares two strains of E. faecium; one with and one without Enterococcal surface protein (Esp), a marker which recent research has linked to human sources, to evaluate whether the presence of Esp affects bacterial attachment to sand. The results indicate that in water with neutral pH (~7.2) the presence of Esp is linked to increased attachment to sand, thereby reducing the mobility of the Esp positive E. faecium. Because indicator bacteria should have relatively high mobility, this increased attachment potentially decreases the usefulness of Esp for MST. The results are consistent with calculations using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory of colloidal attachment, which predicts that attachment in bacteria with Esp should be greater than in those without Esp due to the presence of a higher energy barrier for the bacteria without Esp. The second part of this research compares the transport of the common aerobic fecal indicator bacteria E. coli, which has had limited success in source tracking, to the much more abundant anaerobic B. fragilis, which has shown promise as a potential MST bacteria. The results indicate that in water with neutral pH and low total ionic strength conditions, both E. coli and B. fragilis have similar attachment to sand, but at high ionic strength, such as may be found in areas near the source of contamination, the B. fragilis has lower attachment (and thus potentially higher mobility) than E. coli. The XDLVO calculations indicate a secondary energy minimum exists at higher ionic strength for both bacteria. This secondary minimum, which is absent at low ionic strength, occurs at a distance of 1 to 20 nm from the sand surface and appears to be the result of compression of the electrostatic double layer. The depth of this energy minimum is greater for E. coli than for B. fragilis, leading to greater attachment in the E. coli than the B. fragilis

    Bitter Victory: The Battle for Sicily, 1943, by Carlo D\u27Este, and Decision in Nonnandy

    Get PDF

    Alien Registration- Johanson, Mauritz J. (Vinalhaven, Knox County)

    Get PDF
    https://digitalmaine.com/alien_docs/13021/thumbnail.jp

    Sea Soliders in the Cold War: Amphibious Warfare, 1945-1991

    Get PDF

    The Roots of Blitzkrieg: Hans von Seeckt and German Military Reform

    Get PDF

    The consequenses in Sweden of the Chernobyl accident

    Get PDF
    The 137Cs activity concentrations in various kinds of animal material show very large variations

    The internationalisation of the Spanish SME sector

    Get PDF
    As part of a wider research program, we analysed the theoretical framework and the recent developments of the process of internationalisation (transnationalisation) of the small- and medium-sized enterprises in Spain. The paper highlights the main trends and barriers of this internationalisation process. Methodology included document analyses, interviews, and the analyses of statistical databases

    Inquiry-based Experiments for Large-scale Introduction to PCR and Eestriction Enzyme Digests

    Get PDF
    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are designed for introductory laboratory courses and combine both techniques. In both approaches, students must determine the identity of an unknown DNA sequence, either a gene sequence or a primer sequence, based on a combination of PCR product size and restriction digest pattern. The experimental design is flexible, and can be adapted based on available instructor preparation time and resources, and both approaches can accommodate large numbers of students. We implemented these experiments in our courses with a combined total of 584 students and have an 85% success rate. Overall, students demonstrated an increase in their understanding of the experimental topics, ability to interpret the resulting data, and proficiency in general laboratory skills

    Reconfiguring experimental archaeology using 3D reconstruction

    Get PDF
    Experimental archaeology has long yielded valuable insights into the tools and techniques that featured in past peoples’ relationship with the material world around them. We can determine, for example, how many trees would need to be felled to construct a large round-house of the southern British Iron Age (over one hundred), infer the exact angle needed to strike a flint core in order to knap an arrowhead in the manner of a Neolithic hunter-gatherer, or recreate the precise environmental conditions needed to store grain in underground silos over the winter months, with only the technologies and materials available to Romano-Briton villagers (see Coles 1973; Reynolds 1993). However, experimental archaeology has, hitherto, confined itself to rather rigid, empirical and quantitative questions such as those posed in these examples. This is quite understandable, and in line with good scientific practice, which stipulates that any ‘experiment’ must be based on replicable data, and be reproducible. Despite their potential in this area however, it is notable that digital reconstruction technologies have yet to play a significant role in experimental archaeology. Whilst many excellent examples of digital 3D reconstruction of heritage sites exist (for example the Digital Roman Forum project: http://dlib.etc.ucla.edu/projects/Forum) most, if not all, of these are characterized by a drive to establish a photorealistic re-creation of physical features. This paper will discuss possibilities that lie beyond straightforward positivist re-creation of heritage sites, in the experimental reconstruction of intangible heritage. Between 2010 and 2012, the authors led the Motion in Place Platform project (MiPP: http://www.motioninplace.org/), a capital grant under the AHRC's DEDEFI scheme developing motion capture and analysis tools for exploring how people move through spaces. In the course of MiPP, a series of experiments were conducted using motion capture hardware and software at the Silchester Roman town archaeological excavation in Hampshire, and at the Butser Ancient Farm facility, where Romano-British and Iron Age dwellings have been constructed according to the best experimental practice. As well as reconstructing such Roman and early British dwellings in 3D, the authors were able to use motion capture to reconstruct the kind of activities that – according to the material evidence – are likely to have been carried out by the occupants who used them. Bespoke motion capture suits developed for the project were employed, and the traces captured and rendered with a combination of Autodesk and Unity3D software. This sheds new light on how the reconstructed spaces - and, by inference, their ancient counterparts - were most likely to have been used. In particular the exercises allowed the evaluation and visualisation of changes in behaviour which occur as a result of familiarity with an environment and the acquisition of expertise over time; and to assess how interaction between different actors affects how everyday tasks are carried out
    corecore