2,203 research outputs found

    Coronal--Temporal Correlations in GX339-4: Hysteresis, Possible Reflection Changes, and Implications for ADAFs

    Get PDF
    We present spectral fits and timing analysis of Rossi X-ray Timing Explorer observations of GX339-4. These observations were carried out over a span of more than two years and encompassed both the soft/high and hard/low states. Hysteresis in the soft state/hard state transition is observed. The hard state exhibits a possible anti-correlation between coronal compactness (i.e., spectral hardness) and the covering fraction of cold, reflecting material. The correlation between `reflection fraction' and soft X-ray flux, however, appears to be more universal. Furthermore, low flux, hard state observations - taken over a decline into quiescence- show that the Fe line, independent of `reflection fraction', remains broad and at a roughly constant equivalent width, counter to expectations from ADAF models. All power spectral densities (PSD) of the hard state X-ray lightcurves are describable as the sum of just a few broad, quasi-periodic features with frequencies that roughly scale as coronal compactness to the -3/2 power. Similar to observations of Cyg X-1, time lags between soft and hard variability anti-correlate with coronal compactness. A stronger correlation is seen between the time lags and the `reflection fraction'.Comment: 29 Pages, 17 Figures, 6 Tables. Accepted for Publication in MNRAS. (Abstract Abridged

    The column density towards LMC X-1

    Full text link
    We measure the neutral absorption towards the black hole X-ray binary system LMC X-1 from six archival soft X-ray spectra obtained with the gratings and/or CCD detectors on Chandra, XMM-Newton, and Swift. Four spectral models for the soft continuum have been investigated. While the powerlaw model may overestimate NH considerably, the others give consistent results. Taking the lower metalicity of the Large Magellanic Cloud into account, we find equivalent hydrogen column densities of N_H = (1.0-1.3)*10^22 cm^-2, with a systematic dependence on the orbital phase. This variation of the neutral absorption can nearly explain the orbital modulation of the soft X-ray flux recently detected with the All Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE).Comment: 4 pages, accepted for publication as a Letter in Astronomy and Astrophysic

    RXTE Observation of Cygnus X-1: II. Timing Analysis

    Full text link
    We present timing analysis for a Rossi X-ray Timing Explorer observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a `hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f^(-0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.Comment: To Be Published in the Astrophysical Journal. 18 pages. Uses emulatepaj.st

    Measurements of the Cosmological Evolution of Magnetic Fields with the Square Kilometre Array

    Get PDF
    We investigate the potential of the Square Kilometre Array (SKA) for measuring the magnetic fields in clusters of galaxies via Faraday rotation of background polarised sources. [...] We find that about 10 per cent of the sky is covered by a significant extragalactic Faraday screen. Most of it has rotation measures between 10 and 100 rad/m/m. We argue that the cluster centres should have up to about 5000 rad/m/m. We show that the proposed mid frequency aperture array of the SKA as well as the lowest band of the SKA dish array are well suited to make measurements for most of these rotation measure values, typically requiring a signal-to-noise of ten. We calculate the spacing of sources forming a grid for the purpose of measuring foreground rotation measures: it reaches a spacing of 36 arcsec for a 100 hour SKA observation per field. We also calculate the statistics for background RM measurements in clusters of galaxies. We find that a first phase of the SKA would allow us to take stacking experiments out to high redshifts (>1), and provide improved magnetic field structure measurements for individual nearby clusters. The full SKA aperture array would be able to make very detailed magnetic field structure measurements of clusters with more than 100 background sources per cluster up to a redshift of 0.5 and more than 1000 background sources per cluster for nearby clusters, and could for reasonable assumptions about future measurements of electron densities in high redshift clusters constrain the power law index for the magnetic field evolution to better than dm=0.4, if the magnetic field in clusters should follow B ~ (1+z)^m.Comment: 12 pages, 10 figures, 3 tables, accepted by MNRAS, minor correction to eq (5

    Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system. I. The non-dip spectrum in the low/hard state

    Get PDF
    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.Comment: 16 pages, 15 figures, uses emulateapj, published as ApJ 690:330-346, 2009 January

    On Estimating the High-Energy Cutoff in the X-ray Spectra of Black Holes via Reflection Spectroscopy

    Get PDF
    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ\Gamma of the power-law continuum and the energy EcutE_{cut} at which it rolls over. Remarkably, this parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that fitting simultaneous NuSTAR (3-79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model RELXILL, one can obtain reasonable constraints on EcutE_{cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.Comment: Accepted for publication in ApJL, 6 pages, 5 figure

    Multi-Satellite Observations of Cygnus X-1 to Study the Focused Wind and Absorption Dips

    Get PDF
    High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbital phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering >95 % of the X-ray source, with column densities likely to be of several 10^23 cm^-2, which also affect photon energies above 20 keV via Compton scattering.Comment: 10 pages, contributed talk at the 7th Microquasar Workshop, Foca, Turkey, Sept. 1-5, 200

    Andreev reflection at half-metal-superconductor interfaces with non-uniform magnetization

    Full text link
    Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.Comment: 13 pages, 4 figure
    • …
    corecore