17 research outputs found

    Investigating Homology between Proteins using Energetic Profiles

    Get PDF
    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future thermodynamically informed classification of protein homology

    Automated Alphabet Reduction for Protein Datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate automated and generic alphabet reduction techniques for protein structure prediction datasets. Reducing alphabet cardinality without losing key biochemical information opens the door to potentially faster machine learning, data mining and optimization applications in structural bioinformatics. Furthermore, reduced but informative alphabets often result in, e.g., more compact and human-friendly classification/clustering rules. In this paper we propose a robust and sophisticated alphabet reduction protocol based on mutual information and state-of-the-art optimization techniques.</p> <p>Results</p> <p>We applied this protocol to the prediction of two protein structural features: contact number and relative solvent accessibility. For both features we generated alphabets of two, three, four and five letters. The five-letter alphabets gave prediction accuracies statistically similar to that obtained using the full amino acid alphabet. Moreover, the automatically designed alphabets were compared against other reduced alphabets taken from the literature or human-designed, outperforming them. The differences between our alphabets and the alphabets taken from the literature were quantitatively analyzed. All the above process had been performed using a primary sequence representation of proteins. As a final experiment, we extrapolated the obtained five-letter alphabet to reduce a, much richer, protein representation based on evolutionary information for the prediction of the same two features. Again, the performance gap between the full representation and the reduced representation was small, showing that the results of our automated alphabet reduction protocol, even if they were obtained using a simple representation, are also able to capture the crucial information needed for state-of-the-art protein representations.</p> <p>Conclusion</p> <p>Our automated alphabet reduction protocol generates competent reduced alphabets tailored specifically for a variety of protein datasets. This process is done without any domain knowledge, using information theory metrics instead. The reduced alphabets contain some unexpected (but sound) groups of amino acids, thus suggesting new ways of interpreting the data.</p

    Nature of protein family signatures: Insights from singular value analysis of position-specific scoring matrices

    Get PDF
    Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. The presented method may be used to separate functionally important sites from structurally important ones, and thus it may be a useful tool for predicting protein functions.Comment: 22 pages, 7 figures, 4 table

    Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia

    Get PDF
    Background: Although the etiology of chronic lymphocytic leukemia (CLL), the most common type of adult leukemia, is still unclear, strong evidence implicates antigen involvement in disease ontogeny and evolution. Primary and 3D structure analysis has been utilised in order to discover indications of antigenic pressure. The latter has been mostly based on the 3D models of the clonotypic B cell receptor immunoglobulin (BcR IG) amino acid sequences. Therefore, their accuracy is directly dependent on the quality of the model construction algorithms and the specific methods used to compare the ensuing models. Thus far, reliable and robust methods that can group the IG 3D models based on their structural characteristics are missing. Results: Here we propose a novel method for clustering a set of proteins based on their 3D structure focusing on 3D structures of BcR IG from a large series of patients with CLL. The method combines techniques from the areas of bioinformatics, 3D object recognition and machine learning. The clustering procedure is based on the extraction of 3D descriptors, encoding various properties of the local and global geometrical structure of the proteins. The descriptors are extracted from aligned pairs of proteins. A combination of individual 3D descriptors is also used as an additional method. The comparison of the automatically generated clusters to manual annotation by experts shows an increased accuracy when using the 3D descriptors compared to plain bioinformatics-based comparison. The accuracy is increased even more when using the combination of 3D descriptors. Conclusions: The experimental results verify that the use of 3D descriptors commonly used for 3D object recognition can be effectively applied to distinguishing structural differences of proteins. The proposed approach can be applied to provide hints for the existence of structural groups in a large set of unannotated BcR IG protein files in both CLL and, by logical extension, other contexts where it is relevant to characterize BcR IG structural similarity. The method does not present any limitations in application and can be extended to other types of proteins
    corecore