139 research outputs found

    Effect of HPV vaccination and cervical cancer screening in England by ethnicity: a modelling study.

    Get PDF
    BACKGROUND: Health equality is increasingly being considered alongside overall health gain when assessing public health interventions. However, the trade-off between the direct effects of vaccination and herd immunity could lead to unintuitive consequences for the distribution of disease burden within a population. We used a transmission dynamic model of human papillomavirus (HPV) to investigate the effect of ethnic disparities in vaccine and cervical screening uptake on inequality in disease incidence in England. METHODS: We developed an individual-based model of HPV transmission and disease, parameterising it with the latest data for sexual behaviour (from National Survey of Sexual Attitudes and Lifestyles [Natsal-3]) and vaccine and screening uptake by ethnicity (from Public Health England [PHE]) and fitting it to data for HPV prevalence (from ARTISTIC, PHE, Natsal-3) and HPV-related disease incidence (from National Cancer Registry [ONS]). The outcome of interest was the age-adjusted incidence of HPV-related cancer (both cervical and non-cervical) in all women in England in view of differences and changes in vaccination and screening uptake by ethnicity in England, over time. We also studied three potential public health interventions aimed at reducing inequality in HPV-related disease incidence: increasing uptake in black and Asian females to match that in whites for vaccination; cervical screening in women who turn 25 in 2018 or later; and cervical screening in all ages. FINDINGS: In the pre-vaccination era, before 2008, women from ethnic minorities in England reported a disproportionate share of cervical disease. Our model suggests that Asian women were 1·7 times (95% credibility interval [CI] 1·1-2·7) more likely to be diagnosed with cervical cancer than white women (22·8 vs 13·4 cases per 100 000 women). Because HPV vaccination uptake is lower in ethnic minorities, we predict an initial widening of this gap, with cervical cancer incidence in Asian women up to 2·5 times higher (95% CI 1·3-4·8) than in white women 20 years after vaccine introduction (corresponding to an additional 10·8 [95% CI 10·1-11·5] cases every year). In time, we predict that herd immunity benefits will diffuse from the larger white sub-population and the disparity will narrow. Increased cervical screening uptake in vaccinated women from ethnic minorities would lead to rapid improvement in equality with parity in incidence after 20 years of HPV vaccination. INTERPRETATION: Our study suggests that the introduction of HPV vaccination in England will initially widen a pre-existing disparity in the incidence of HPV-related cancer by ethnicity, partly due to herd immunity disproportionately benefiting subgroups with high vaccination rates. Although in time this induced disparity will narrow, increasing cervical screening uptake in girls from ethnic minorities should be encouraged to eliminate the inequality in cervical cancer incidence in the medium term. We recommend that dynamic effects should be considered when estimating the effect of public health programmes on equality. FUNDING: Cancer Research UK

    Support to Continue Studying: Greater Manchester Mental Health in Further Education Evaluation Final Report

    Get PDF
    This evaluation was commissioned by the Association of Colleges to consider the impacts of the Greater Manchester Mental Health in Further Education project on the experience of learners, staff and strategic working. The evaluation consists of two phases and was conducted by York St John University’s Converge Evaluation and Team – a group of researchers with lived experience of mental health challenges that share insight through experience. This report shares findings from Phase 2 drawing on interviews with staff across a range of roles and colleges, workshops with learners, an online survey and existing project data. A primarily qualitative approach was used to gather narratives of the project’s impact and distance travelled from the perspective of those involved. For Phase 1 findings see the interim report

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics

    Ross operation in children and young adults: the Alder Hey case series

    Get PDF
    BACKGROUND: The ideal prosthesis for aortic valve replacement in children and young adults has not been found yet. In recent years there has been a renewed interest in the replacement of aortic valve with the pulmonary autograft owing to its advantages of lack of anticoagulation, potential for growth and excellent haemodynamic performance. The purpose of this study was to review our institutional experience at Alder Hey hospital with the Ross procedure in children and young adults. METHODS: From November 1996 to September 2003, 38 patients (mean age, 13.1 ± 5.7 years) underwent the Ross procedure for various aortic valve diseases using the root replacement technique. Clinical and echocardiographic follow-up was performed early (within 30 days), 3 to 6 months, and yearly after surgery. Medical records of all patients were reviewed retrospectively. RESULTS: There was 1 perioperative death. The patients were followed-up for a median interval of 36 months and up to 7 years. One patient died 3 years after surgery secondary to ventricular arrhythmia with overall mortality of 5.3%. Actuarial survival at 7 years was 94 ± 2.5% and there was 100% freedom from reoperation for autograft valve dysfunction or any other cause. Balloon dilatation was required in 2 patients for pulmonary homograft stenosis. The haemodynamics at the latest follow-up were also similar to those at the time of discharge after surgery. There was no progression in the degree of aortic regurgitation for 11 patients with trivial and 3 with mild regurgitation. CONCLUSION: Our experience demonstrates that Ross operation is an attractive option for aortic valve replacement in children and young adults. Not only can the operation be accomplished with a low operative risk but the valve function stays normal over a long period of time with minimal alteration in lifestyle and no need for repeated operations to replace the valve as a result of somatic growth of the children

    A Review of Chemosensation and Related Behavior in Aquatic Insects

    Get PDF
    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Physiological roles for ecto-5’-nucleotidase (CD73)

    Get PDF
    Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals

    Dynamic purine signaling and metabolism during neutrophil–endothelial interactions

    Get PDF
    During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Extracting key information from historical data to quantify the transmission dynamics of smallpox

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of the transmission dynamics of smallpox is crucial for optimizing intervention strategies in the event of a bioterrorist attack. This article reviews basic methods and findings in mathematical and statistical studies of smallpox which estimate key transmission parameters from historical data.</p> <p>Main findings</p> <p>First, critically important aspects in extracting key information from historical data are briefly summarized. We mention different sources of heterogeneity and potential pitfalls in utilizing historical records. Second, we discuss how smallpox spreads in the absence of interventions and how the optimal timing of quarantine and isolation measures can be determined. Case studies demonstrate the following. (1) The upper confidence limit of the 99th percentile of the incubation period is 22.2 days, suggesting that quarantine should last 23 days. (2) The highest frequency (61.8%) of secondary transmissions occurs 3–5 days after onset of fever so that infected individuals should be isolated before the appearance of rash. (3) The U-shaped age-specific case fatality implies a vulnerability of infants and elderly among non-immune individuals. Estimates of the transmission potential are subsequently reviewed, followed by an assessment of vaccination effects and of the expected effectiveness of interventions.</p> <p>Conclusion</p> <p>Current debates on bio-terrorism preparedness indicate that public health decision making must account for the complex interplay and balance between vaccination strategies and other public health measures (e.g. case isolation and contact tracing) taking into account the frequency of adverse events to vaccination. In this review, we summarize what has already been clarified and point out needs to analyze previous smallpox outbreaks systematically.</p
    corecore