100 research outputs found

    Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    Get PDF
    Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis NRRL Y-7124 were subjected to UV-C (234 nm) irradiation targeted at approximately 40% cell survival. When surviving cells were selected in sufficient numbers via automated plating strategies and cultured anaerobically on xylose medium for 5 months at 28°C, five novel mutagenized S. stipitis strains were obtained. Variable number tandem repeat analysis revealed that mutations had occurred in the genome, which may have produced genes that allowed the anaerobic utilization of xylose. The mutagenized strains were capable of growing anaerobically on xylose/glucose substrate with higher ethanol production during 250- to 500-h growth than a Saccharomyces cerevisiae yeast strain that is the standard for industrial fuel ethanol production. The S. stipitis strains resulting from this intense multigene mutagenesis strategy have potential application in industrial fuel ethanol production from lignocellulosic hydrolysates

    The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate

    Get PDF
    Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration (V flask/V medium ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y P/S; cell yield factor, Y X/S; and ethanol volumetric productivity, Q P) was investigated through a 22 full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y P/S = 0.37 g/g and Q P = 0.39 g/l.h) were found when the lowest aeration (2.5 V flask/V medium ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.The financial support from Fapesp (Brazil) is gratefully acknowledged

    Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering

    Get PDF
    Hardwood spent sulfite liquor (HSSL) is a by-product of acid sulfite pulping process that is rich in xylose, a monosaccharide that can be fermented to ethanol by Scheffersomyces stipitis. However, HSSL also contains acetic acid and lignosulfonates that are inhibitory compounds of yeast growth. The main objective of this study was the use of an evolutionary engineering strategy to obtain variants of S. stipitis with increased tolerance to HSSL inhibitors while maintaining the ability to ferment xylose to ethanol

    Effect of cell immobilization and pH on Scheffersomyces stipitis growth and fermentation capacity in rich and inhibitory media

    Get PDF
    Background A wide range of value-added products can potentially be produced by bioprocessing hardwood spent sulfite liquors (HSSLs) that are by-products of pulp and paper industry with a high pentose sugar content. However, besides sugars, HSSLs contain considerable amounts of sulfonated lignin derivatives and acetic acid that inhibit the metabolic activity of most microorganisms. Scheffersomyces stipitis is a yeast with high capacity to ferment the pentose sugar xylose under appropriate microaerophilic conditions but it has limited tolerance to HSSL inhibitors. In the present study, cultivations of suspended and immobilized S. stipitis were compared in terms of growth capacity and by-product formation using rich medium and HSSL to investigate whether the immobilization of cells in calcium alginate beads could be a protection against inhibitors while favoring the presence of microaerophilic conditions. Results Whereas cell immobilization clearly favored the fermentative metabolism in rich medium, pH control was found to play a more important role than cell immobilization on the ethanol production efficiency from bio-detoxified HSSL (bdHSSL), leading to an improvement of 1.3-fold on the maximum ethanol productivity than using suspended cells. When immobilization and pH control were applied simultaneously, the ethanol yield improved by 1.3-fold with unchanged productivity, reaching 0.26 g ethanol.(g glucose\ +\ xylose)\−1. Analysis of the immobilized beads inside revealed that the cells had grown in the opposite direction of the cortex. Conclusions Immobilization and pH control at 5.5, when applied simultaneously, have a positive impact on the fermentative metabolism of S. stipitis, improving the ethanol production efficiency. For the first time light microscopic analysis of the beads suggested that the nutrient and mass transfer limitations played a more important role in the fermentation than a possible protective role against inhibitors. Keywords Scheffersomyces stipitis Hardwood spent sulfite liquor Cell immobilization Light microscopy Ca alginate beads Xylose fermentation Stress toleranc

    Unsupervised assessment of microarray data quality using a Gaussian mixture model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality assessment of microarray data is an important and often challenging aspect of gene expression analysis. This task frequently involves the examination of a variety of summary statistics and diagnostic plots. The interpretation of these diagnostics is often subjective, and generally requires careful expert scrutiny.</p> <p>Results</p> <p>We show how an unsupervised classification technique based on the Expectation-Maximization (EM) algorithm and the naïve Bayes model can be used to automate microarray quality assessment. The method is flexible and can be easily adapted to accommodate alternate quality statistics and platforms. We evaluate our approach using Affymetrix 3' gene expression and exon arrays and compare the performance of this method to a similar supervised approach.</p> <p>Conclusion</p> <p>This research illustrates the efficacy of an unsupervised classification approach for the purpose of automated microarray data quality assessment. Since our approach requires only unannotated training data, it is easy to customize and to keep up-to-date as technology evolves. In contrast to other "black box" classification systems, this method also allows for intuitive explanations.</p
    corecore