19 research outputs found

    Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile)

    Get PDF
    The invasive Argentine ant (Linepithema humile) is established worldwide and displaces native ant species. In northern California, however, the native winter ant (Prenolepis imparis) persists in invaded areas. We found that in aggressive interactions between the two species, P. imparis employs a potent defensive secretion. Field observations were conducted at P. imparis nest sites both in the presence and absence of L. humile. These observations suggested and laboratory assays confirmed that P. imparis workers are more likely to secrete when outnumbered by L. humile. Workers of P. imparis were also more likely to secrete near their nest entrances than when foraging on trees. One-on-one laboratory trials showed that the P. imparis secretion is highly lethal to L. humile, causing 79% mortality. The nonpolar fraction of the secretion was chemically analyzed with gas chromatography/mass spectrometry, and found to be composed of long-chain and cyclic hydrocarbons. Chemical analysis of dissected P. imparis workers showed that the nonpolar fraction is derived from the Dufour's gland. Based on these conclusions, we hypothesize that this chemical defense may help P. imparis to resist displacement by L. humile

    Transcriptional regulation of hepatic lipogenesis

    No full text
    Fatty acid and fat synthesis in liver is a highly regulated metabolic pathway critical for energy distribution. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcription level. Transcription factors, such as USF, SREBP-1c, LXR and ChREBP play critical roles in this process. Recently, insights have been gained into how various signaling pathways regulate these transcription factors. After feeding, high blood glucose and insulin induce lipogenic genes through several pathways, including DNA-PK, aPKC and Akt-mTOR. Various transcription factors and coregulators undergo specific modifications, such as phosphorylation, acetylation, or ubiquitination, which affect their function, stability, or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance
    corecore