2,191 research outputs found

    Comparative study on the microbiology and shelf life stability of palm wine from Elaeis guineensis and Raphia hookeri obtained from Okigwe, Nigeria

    Get PDF
    The microbiological and biochemical changes and shelf life stability of Elaeis guineensis and Raphia hookeri brands of palm wine were determined. R. hookeri brands were found to habour more heterotrophic and coliform population than the E. guineensis, whereas the later haboured more yeast species. Identification tests revealed the isolation of Bacillus, Lactobacillus, Brevibacterium and Staphylococcus from E. guineensis while Escherichia coli and Micrococcus species with the exception of Brevibacterium sp. was additionally isolated from R. hookeri. Furthermore heterotrophic count and pH were observed to decrease with increased fermentation days. The effect of the preservatives on the sensory properties of palm wine was dependent on the type of preservation used. The level of CO2 as well as the effect of extracts from the plant preservatives on the isolates from the palm wine samples was also carried out. Percentage loss of CO2 for each successive fermentation day was observed and there was significant difference in the effect of the plant preservatives used

    Factors influencing pharmacists and pharmaceutical scientists’ membership in professional organisations: an international survey

    Get PDF
    Background: Professional organisations exist as international or national organisations, with each country establishing at least one national professional association. There remains a knowledge gap about factors that influence professional organisational involvement of pharmacists and pharmaceutical scientists. This study aims to explore the motivators and barriers of pharmacy professionals holding organisation membership from a global perspective. Methods: An online questionnaire was developed and disseminated between May and July 2021. The survey was open to all pharmacists and pharmaceutical scientists. The survey consisted of four sections; demographic information, questions about professional organisations, about the International Pharmaceutical Federation (FIP) and its impact on the members. Data were analysed descriptively. Results: A total of 1033 complete survey responses were received and included in the analysis. Of all respondents, 761 (73.7%) respondents were current members of a professional organisation and 272 (26.3%) were not members of any professional organisation. Overall, findings demonstrated networking, education, training and professional development opportunities as the main interests and anticipated activities, while the lack of clarity or need to join organisation, time, and financial constraints as the main barriers of pharmacy professionals holding membership. The majority of FIP members are satisfied with current FIP activities, and anticipate further networking opportunities, educational resources and grants made available to members. Conclusions: Understanding the perceptions and needs, as well as factors that influence engagement of pharmacists and pharmaceutical scientists is the key to enhancing membership. Professional organisations are highly encouraged to strengthen and target activities according to the identified motivators and barriers

    Comparison of Genome-Wide Association Scans for Quantitative and Observational Measures of Human Hair Curvature.

    Full text link
    Previous genetic studies on hair morphology focused on the overall morphology of the hair using data collected by self-report or researcher observation. Here, we present the first genome-wide association study (GWAS) of a micro-level quantitative measure of hair curvature. We compare these results to GWAS results obtained using a macro-level classification of observable hair curvature performed in the same sample of twins and siblings of European descent. Observational data were collected by trained observers, while quantitative data were acquired using an Optical Fibre Diameter Analyser (OFDA). The GWAS for both the observational and quantitative measures of hair curvature resulted in genome-wide significant signals at chromosome 1q21.3 close to the trichohyalin (TCHH) gene, previously shown to harbor variants associated with straight hair morphology in Europeans. All genetic variants reaching genome-wide significance for both GWAS (quantitative measure lead single-nucleotide polymorphism [SNP] rs12130862, p = 9.5 × 10-09; observational measure lead SNP rs11803731, p = 2.1 × 10-17) were in moderate to very high linkage disequilibrium (LD) with each other (minimum r2 = .45), indicating they represent the same genetic locus. Conditional analyses confirmed the presence of only one signal associated with each measure at this locus. Results from the quantitative measures reconfirmed the accuracy of observational measures

    Influence of topography on tide propagation and amplification in semi-enclosed basins

    Get PDF
    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having either a uniform depth or two depths separated by a transverse topographic step. The problem is forced by an incoming Kelvin wave at the open end, while allowing waves to radiate outward. The solution in each compartment is written as the superposition of (semi)-analytical wave solutions in an infinite channel, individually satisfying the depth-averaged linear shallow water equations on the f plane, including bottom friction. A collocation technique is employed to satisfy continuity of elevation and flux across the longitudinal topographic steps between the compartments. The model results show that the tidal wave in shallow parts displays slower propagation, enhanced dissipation and amplified amplitudes. This reveals a resonance mechanism, occurring when\ud the length of the shallow end is roughly an odd multiple of the quarter Kelvin wavelength. Alternatively, for sufficiently wide basins, also Poincaré waves may become resonant. A transverse step implies different wavelengths of the incoming and reflected Kelvin wave, leading to increased amplitudes in shallow regions and a shift of amphidromic points in the direction of the deeper part. Including the shallow parts near the basin’s closed end (thus capturing the Kelvin resonance mechanism) is essential to reproduce semi-diurnal and diurnal\ud tide observations in the Gulf of California, the Adriatic Sea and the Persian Gulf

    Metal [100] Nanowires with Negative Poisson???s Ratio

    Get PDF
    When materials are under stretching, occurrence of lateral contraction of materials is commonly observed. This is because Poisson???s ratio, the quantity describes the relationship between a lateral strain and applied strain, is positive for nearly all materials. There are some reported structures and materials having negative Poisson???s ratio. However, most of them are at macroscale, and reentrant structures and rigid rotating units are the main mechanisms for their negative Poisson???s ratio behavior. Here, with numerical and theoretical evidence, we show that metal [100] nanowires with asymmetric cross-sections such as rectangle or ellipse can exhibit negative Poisson???s ratio behavior. Furthermore, the negative Poisson???s ratio behavior can be further improved by introducing a hole inside the asymmetric nanowires. We show that the surface effect inducing the asymmetric stresses inside the nanowires is a main origin of the superior property.ope

    SNPs and Other Features as They Predispose to Complex Disease: Genome-Wide Predictive Analysis of a Quantitative Phenotype for Hypertension

    Get PDF
    Though recently they have fallen into some disrepute, genome-wide association studies (GWAS) have been formulated and applied to understanding essential hypertension. The principal goal here is to use data gathered in a GWAS to gauge the extent to which SNPs and their interactions with other features can be combined to predict mean arterial blood pressure (MAP) in 3138 pre-menopausal and naturally post-menopausal white women. More precisely, we quantify the extent to which data as described permit prediction of MAP beyond what is possible from traditional risk factors such as blood cholesterol levels and glucose levels. Of course, these traditional risk factors are genetic, though typically not explicitly so. In all, there were 44 such risk factors/clinical variables measured and 377,790 single nucleotide polymorphisms (SNPs) genotyped. Data for women we studied are from first visit measurements taken as part of the Atherosclerotic Risk in Communities (ARIC) study. We begin by assessing non-SNP features in their abilities to predict MAP, employing a novel regression technique with two stages, first the discovery of main effects and next discovery of their interactions. The long list of SNPs genotyped is reduced to a manageable list for combining with non-SNP features in prediction. We adapted Efron's local false discovery rate to produce this reduced list. Selected non-SNP and SNP features and their interactions are used to predict MAP using adaptive linear regression. We quantify quality of prediction by an estimated coefficient of determination (R2). We compare the accuracy of prediction with and without information from SNPs

    Uncoupling Protein-4 (UCP4) Increases ATP Supply by Interacting with Mitochondrial Complex II in Neuroblastoma Cells

    Get PDF
    Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP+), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis
    corecore