103 research outputs found
The Smell of Age: Perception and Discrimination of Body Odors of Different Ages
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20–30 years old), Middle-age (45–55), and Old-age (75–95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Breast cancer risk factors in relation to breast density (United States)
OBJECTIVES: Evaluate known breast cancer risk factors in relation to breast density. METHODS: We examined factors in relation to breast density in 144,018 New Hampshire (NH) women with at least one mammogram recorded in a statewide mammography registry. Mammographic breast density was measured by radiologists using the BI-RADS classification; risk factors of interest were obtained from patient intake forms and questionnaires. RESULTS: Initial analyses showed a strong inverse influence of age and body mass index (BMI) on breast density. In addition, women with late age at menarche, late age at first birth, premenopausal women, and those currently using hormone therapy (HT) tended to have higher breast density, while those with greater parity tended to have less dense breasts. Analyses stratified on age and BMI suggested interactions, which were formally assessed in a multivariable model. The impact of current HT use, relative to nonuse, differed across age groups, with an inverse association in younger women, and a positive association in older women (p < 0.0001 for the interaction). The positive effects of age at menarche and age at first birth, and the inverse influence of parity were less apparent in women with low BMI than in those with high BMI (p = 0.04, p < 0.0001 and p = 0.01, respectively, for the interactions). We also noted stronger positive effects for age at first birth in postmenopausal women (p = 0.004 for the interaction). The multivariable model indicated a slight positive influence of family history of breast cancer. CONCLUSIONS: The influence of age at menarche and reproductive factors on breast density is less evident in women with high BMI. Density is reduced in young women using HT, but increased in HT users of age 50 or more
Many LINE1 elements contribute to the transcriptome of human somatic cells
Over 600 LINE 1 elements are shown to be transcribed in humans; 400 of these are full-length elements in the reference genome
The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation
Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1+/− mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis
Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo
Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9–10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5–E13.5. Analysis of Wnt5a−/− mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a−/− mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors
Veterans walk to beat back pain: study rationale, design and protocol of a randomized trial of a pedometer-based Internet mediated intervention for patients with chronic low back pain
<p>Abstract</p> <p>Background</p> <p>Chronic back pain is a significant problem worldwide and may be especially prevalent among patients receiving care in the U.S. Department of Veterans Affairs healthcare system. Back pain affects adults at all ages and is associated with disability, lost workplace productivity, functional limitations and social isolation. Exercise is one of the most effective strategies for managing chronic back pain. Yet, there are few clinical programs that use low cost approaches to help patients with chronic back pain initiate and maintain an exercise program.</p> <p>Methods/Design</p> <p>We describe the design and rationale of a randomized controlled trial to assess the efficacy of a pedometer-based Internet mediated intervention for patients with chronic back pain. The intervention uses an enhanced pedometer, website and e-community to assist these patients with initiating and maintaining a regular walking program with the primary aim of reducing pain-related disability and functional interference. The study specific aims are: 1) To determine whether a pedometer-based Internet-mediated intervention reduces pain-related functional interference among patients with chronic back pain in the short term and over a 12-month timeframe. 2) To assess the effect of the intervention on walking (measured by step counts), quality of life, pain intensity, pain related fear and self-efficacy for exercise. 3) To identify factors associated with a sustained increase in walking over a 12-month timeframe among patients randomized to the intervention.</p> <p>Discussion</p> <p>Exercise is an integral part of managing chronic back pain but to be effective requires that patients actively participate in the management process. This intervention is designed to increase activity levels, improve functional status and make exercise programs more accessible for a broad range of patients with chronic back pain.</p> <p>Trial Registration Number</p> <p>NCT00694018</p
- …