83 research outputs found

    Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses

    Get PDF
    BACKGROUND: NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS: The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. RESULTS: We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION: This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02313077. FUNDING: U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA)

    Relaxation of contact pressure and self-loosening in dynamic bolted joints

    Get PDF
    Bolted joints are widely used in a variety of engineering applications where they are dynamically loaded with frequencies of vibration spread over a wide spectrum with the same general effects. When under dynamic loading, bolted joints can become loose due to a loss in clamping pressure in the joints. This vibrational loosening sometimes can cause serious problems, and in some cases can lead to fatal consequences if it remains undetected. Non-intrusive ultrasonic and image processing techniques were simultaneously used to investigate the relaxation of contact pressure and loosening of bolted joints subjected to cyclic shear loading. Three critical areas, the contact interface of the bolted component, the bolt length and the rotation of the bolt head, were monitored during loosening of the joints. The results show that loosening of bolted joints can be grouped into three stages: very rapid, rapid, and gradual loosening. The earliest stage of the loosening of bolted joints is characterised by cyclic strain ratcheting–loosening of the bolted joint during vibration without rotation of the bolt head. The higher the rate of relaxation at this early stage, the lower is the resistance of the bolted joint to vibration-induced loosening. Both the dynamic shear load and an additional constant shear load in another direction were observed to affect the rate of loosening, and at this early stage, a rise in the magnitude of the additional constant shear load increases the rate of loosening. Furthermore, the contact pressure distribution affects the rate of loosening at the bolted joint interface, as loosening increases away from area of high contact pressure

    Characterization of LINE-1 Ribonucleoprotein Particles

    Get PDF
    The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition

    Get PDF
    Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing

    Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition

    Full text link
    Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells. The resulting retrotransposition events can alter the expression of neuronal genes, which, in turn, can influence neuronal cell fate in vitro. We further show that retrotransposition of a human L1 in transgenic mice results in neuronal somatic mosaicism. The molecular mechanism of action is probably mediated through Sox2, because a decrease in Sox2 expression during the early stages of neuronal differentiation is correlated with increases in both L1 transcription and retrotransposition. Our data therefore indicate that neuronal genomes might not be static, but some might be mosaic because of de novo L1 retrotransposition events.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62714/1/nature03663.pd

    The Impact of CpG Island on Defining Transcriptional Activation of the Mouse L1 Retrotransposable Elements

    Get PDF
    BACKGROUND: L1 retrotransposable elements are potent insertional mutagens responsible for the generation of genomic variation and diversification of mammalian genomes, but reliable estimates of the numbers of actively transposing L1 elements are mostly nonexistent. While the human and mouse genomes contain comparable numbers of L1 elements, several phylogenetic and L1Xplore analyses in the mouse genome suggest that 1,500-3,000 active L1 elements currently exist and that they are still expanding in the genome. Conversely, the human genome contains only 150 active L1 elements. In addition, there is a discrepancy among the nature and number of mouse L1 elements in L1Xplore and the mouse genome browser at the UCSC and in the literature. To date, the reason why a high copy number of active L1 elements exist in the mouse genome but not in the human genome is unknown, as are the potential mechanisms that are responsible for transcriptional activation of mouse L1 elements. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the promoter sequences of the 1,501 potentially active mouse L1 elements retrieved from the GenBank and L1Xplore databases and evaluated their transcription factors binding sites and CpG content. To this end, we found that a substantial number of mouse L1 elements contain altered transcription factor YY1 binding sites on their promoter sequences that are required for transcriptional initiation, suggesting that only a half of L1 elements are capable of being transcriptionally active. Furthermore, we present experimental evidence that previously unreported CpG islands exist in the promoters of the most active T(F) family of mouse L1 elements. The presence of sequence variations and polymorphisms in CpG islands of L1 promoters that arise from transition mutations indicates that CpG methylation could play a significant role in determining the activity of L1 elements in the mouse genome. CONCLUSIONS: A comprehensive analysis of mouse L1 promoters suggests that the number of transcriptionally active elements is significantly lower than the total number of full-length copies from the three active mouse L1 families. Like human L1 elements, the CpG islands and potentially the transcription factor YY1 binding sites are likely to be required for transcriptional initiation of mouse L1 elements

    The impact of transposable element activity on therapeutically relevant human stem cells

    Get PDF
    Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapiesS.R.H. and P.T.R. are funded by the Government of Spain (MINECO, RYC-2016- 21395 and SAF2015–71589-P [S.R.H.]; PEJ-2014-A-31985 and SAF2015–71589- P [P.T.R.]). GGS is supported by a grant from the Ministry of Health of the Federal Republic of Germany (FKZ2518FSB403)

    RISCI - Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>The availability of multiple whole genome sequences has facilitated <it>in silico </it>identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, <it>in silico </it>subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects.</p> <p>Results -</p> <p>We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of <it>Mycobacterium tuberculosis </it>for IS 6100 insertion polymorphism.</p> <p>Conclusions -</p> <p>RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.</p
    corecore