115 research outputs found

    Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro.

    Get PDF
    Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow-derived MSCs expanded under xenogeneic-free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4- and 6-fold, respectively) after a 14-day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg-like phenotype proliferate. These MSC-induced Treg-like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC-induced Treg-like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD-1 is higher in Treg-like cells than in Tcon, whereas the frequency of PDL-1 increases in MSCs after coculture. TGF-β levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg-like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF-β and/or PD-1/PDL-1 expression. This MSC-induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile

    Bias in the prediction of genetic gain due to mass and half-sib selection in random mating populations

    Get PDF
    The prediction of gains from selection allows the comparison of breeding methods and selection strategies, although these estimates may be biased. The objective of this study was to investigate the extent of such bias in predicting genetic gain. For this, we simulated 10 cycles of a hypothetical breeding program that involved seven traits, three population classes, three experimental conditions and two breeding methods (mass and half-sib selection). Each combination of trait, population, heritability, method and cycle was repeated 10 times. The predicted gains were biased, even when the genetic parameters were estimated without error. Gain from selection in both genders is twice the gain from selection in a single gender only in the absence of dominance. The use of genotypic variance or broad sense heritability in the predictions represented an additional source of bias. Predictions based on additive variance and narrow sense heritability were equivalent, as were predictions based on genotypic variance and broad sense heritability. The predictions based on mass and family selection were suitable for comparing selection strategies, whereas those based on selection within progenies showed the largest bias and lower association with the realized gain

    Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    Get PDF
    Wetland areas in the Brazilian Cerrado, known as “veredas”, represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation) and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season) using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species.Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted “veredas”. Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat

    Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids

    Get PDF
    Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity. Our data revealed a premature development of the deep-cortical layer, associated to the formation of TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology analysis demonstrated functional defects of RTT neurons. Additionally, assembly of RTT dorsal and ventral organoids revealed impairments of interneuron’s migration. Overall, our models provide a better understanding of RTT during early stages of neural development, demonstrating a great potential for personalized diagnosis and drug screening
    corecore