67,219 research outputs found

    Adversarial Sparse-View CBCT Artifact Reduction

    Full text link
    We present an effective post-processing method to reduce the artifacts from sparsely reconstructed cone-beam CT (CBCT) images. The proposed method is based on the state-of-the-art, image-to-image generative models with a perceptual loss as regulation. Unlike the traditional CT artifact-reduction approaches, our method is trained in an adversarial fashion that yields more perceptually realistic outputs while preserving the anatomical structures. To address the streak artifacts that are inherently local and appear across various scales, we further propose a novel discriminator architecture based on feature pyramid networks and a differentially modulated focus map to induce the adversarial training. Our experimental results show that the proposed method can greatly correct the cone-beam artifacts from clinical CBCT images reconstructed using 1/3 projections, and outperforms strong baseline methods both quantitatively and qualitatively

    Adversarial training and dilated convolutions for brain MRI segmentation

    Full text link
    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images. In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss. The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi

    Transient Characteristics of a Hydraulically Interconnected Suspension System

    Full text link
    This paper describes vehicle dynamic models that capture the large amplitude transient characteristics of a passive Hydraulically Interconnected Suspension (HIS) system. Accurate mathematical models are developed to represent pressure-flow characteristics, fluid properties, damper valves, accumulators and nonlinear coupling between mechanical and fluid systems. The vehicle is modeled as a lumped mass system with half- and fullcar configurations. The transient performance is demonstrated by numerical integration of the second order nonlinear differential equations. The stiffness and damping characteristics corresponding to vehicle bounce, roll and pitch motions are extracted from the transient simulation. Simulation results clearly demonstrate the superiority of the HIS system during vehicle handling and stability by providing additional roll stiffness and reduced articulation stiffness

    International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1) pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE

    Get PDF
    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future

    Inferring Population Preferences via Mixtures of Spatial Voting Models

    Full text link
    Understanding political phenomena requires measuring the political preferences of society. We introduce a model based on mixtures of spatial voting models that infers the underlying distribution of political preferences of voters with only voting records of the population and political positions of candidates in an election. Beyond offering a cost-effective alternative to surveys, this method projects the political preferences of voters and candidates into a shared latent preference space. This projection allows us to directly compare the preferences of the two groups, which is desirable for political science but difficult with traditional survey methods. After validating the aggregated-level inferences of this model against results of related work and on simple prediction tasks, we apply the model to better understand the phenomenon of political polarization in the Texas, New York, and Ohio electorates. Taken at face value, inferences drawn from our model indicate that the electorates in these states may be less bimodal than the distribution of candidates, but that the electorates are comparatively more extreme in their variance. We conclude with a discussion of limitations of our method and potential future directions for research.Comment: To be published in the 8th International Conference on Social Informatics (SocInfo) 201

    A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck.

    Get PDF
    BackgroundAfatinib is an oral, irreversible ErbB family blocker that has shown activity in epidermal growth factor receptor (EGFR)-mutated lung cancer. We hypothesized that the agent would have greater antitumor activity compared with cetuximab in recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients, whose disease has progressed after platinum-containing therapy.Patients and methodsAn open-label, randomized, phase II trial was conducted in 43 centers; 124 patients were randomized (1 : 1) to either afatinib (50 mg/day) or cetuximab (250 mg/m(2)/week) until disease progression or intolerable adverse events (AEs) (stage I), with optional crossover (stage II). The primary end point was tumor shrinkage before crossover assessed by investigator (IR) and independent central review (ICR).ResultsA total of 121 patients were treated (61 afatinib, 60 cetuximab) and 68 crossed over to stage II (32 and 36 respectively). In stage I, mean tumor shrinkage by IR/ICR was 10.4%/16.6% with afatinib and 5.4%/10.1% with cetuximab (P = 0.46/0.30). Objective response rate was 16.1%/8.1% with afatinib and 6.5%/9.7% with cetuximab (IR/ICR). Comparable disease control rates were observed with afatinib (50%) and cetuximab (56.5%) by IR; similar results were seen by ICR. Most common grade ≥3 drug-related AEs (DRAEs) were rash/acne (18% versus 8.3%), diarrhea (14.8% versus 0%), and stomatitis/mucositis (11.5% versus 0%) with afatinib and cetuximab, respectively. Patients with DRAEs leading to treatment discontinuation were 23% with afatinib and 5% with cetuximab. In stage II, disease control rate (IR/ICR) was 38.9%/33.3% with afatinib and 18.8%/18.8% with cetuximab.ConclusionAfatinib showed antitumor activity comparable to cetuximab in R/M HNSCC in this exploratory phase II trial, although more patients on afatinib discontinued treatment due to AEs. Sequential EGFR/ErbB treatment with afatinib and cetuximab provided sustained clinical benefit in patients after crossover, suggesting a lack of cross-resistance

    Norcantharidin (NCTD) induces mitochondria mediated apoptosis in human HepG2 cells

    Get PDF
    Norcantharidin (NCTD), a demethylated form of cantharidin, is now in used as a routine anticancer drug. However, the detailed mechanisms underlying this process are generally unclear. The aims of this study were to evaluate the apoptotic effects and molecular mechanisms of NCTD. MTT assay was used to determine the cell growth inhibitory rate. Flow cytometry were used to detect the apoptosis and the loss of mitochondrial membrane potential (Δψm) induced by NCTD. Caspase detection kit were used to detect the activity of caspase-3 -9. Western-blot was used to detect the expression of Bcl-2, Bax and cytochrome C (cyt C). Our results indicated that, treatment of NCTD resulted in significant decrease in cell viability in a dose-and time-dependent manner. A dose-dependent apoptosis was also observed by flow cytometery analysis. Molecular mechanistic studies of apoptosis revealed that, NCTD treatment resulted in a significant loss of Δψm, release of cyt C, enhanced expression of pro-apoptotic protein Bax and suppression of anti-apoptotic protein Bcl-2. These were followed by activation of caspases-9 and -3, subsequently leading to cell apoptosis. These results indicate that, NCTD induced cytotoxicity in HepG2 cells by apoptosis, which is mediated through mitochondrial pathway.Key words: Norcantharidin, apoptosis, caspase, Bax/Bcl-2, cyto C, HepG2 cells

    Manipulating and assembling metallic beads with Optoelectronic Tweezers

    Get PDF
    Optoelectronic tweezers (OET) or light-patterned dielectrophoresis (DEP) has been developed as a micromanipulation technology for controlling micro- and nano-particles with applications such as cell sorting and studying cell communications. Additionally, the capability of moving small objects accurately and assembling them into arbitrary 2D patterns also makes OET an attractive technology for microfabrication applications. In this work, we demonstrated the use of OET to manipulate conductive silver-coated Poly(methyl methacrylate) (PMMA) microspheres (50μm diameter) into tailored patterns. It was found that the microspheres could be moved at a max velocity of 3200μm/s, corresponding to 4.2 nano-newton (10−9N) DEP force, and also could be positioned with high accuracy via this DEP force. The underlying mechanism for this strong DEP force is shown by our simulations to be caused by a significant increase of the electric field close to the particles, due to the interaction between the field and the silver shells coating the microspheres. The associated increase in electrical gradient causes DEP forces that are much stronger than any previously reported for an OET device, which facilitates manipulation of the metallic microspheres efficiently without compromise in positioning accuracy and is important for applications on electronic component assembling and circuit construction

    Consistency Conditions on S-Matrix of Spin 1 Massless Particles

    Full text link
    Motivated by new techniques in the computation of scattering amplitudes of massless particles in four dimensions, like BCFW recursion relations, the question of how much structure of the S-matrix can be determined from purely S-matrix arguments has received new attention. The BCFW recursion relations for massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can be determined in terms of three-particle amplitudes (evaluated at complex momenta). However, the known proofs of the validity of the relations rely on the Lagrangian of the theory, either by using Feynman diagrams explicitly or by studying the effective theory at large complex momenta. This means that a purely S-matrix theoretic proof of the relations is still missing. The aim of this paper is to provide such a proof for spin 1 particles by extending the four-particle test introduced by P. Benincasa and F. Cachazo in arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply that the rational function built from the BCFW recursion relations possesses all the correct factorization channels including holomorphic and anti-holomorphic collinear limits. This in turn implies that they give the correct S-matrix of the theory.Comment: 24 pages, 4 figure
    • …
    corecore