3,210 research outputs found

    Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: Modeling and experiments reveal hierarchy in glucose repression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptional regulation involves protein-DNA and protein-protein interactions. Protein-DNA interactions involve reactants that are present in low concentrations, leading to stochastic behavior. In addition, multiple regulatory mechanisms are typically involved in transcriptional regulation. In the <it>GAL </it>regulatory system of <it>Saccharomyces cerevisiae</it>, the inhibition of glucose is accomplished through two regulatory mechanisms: one through the transcriptional repressor Mig1p, and the other through regulating the amount of transcriptional activator Gal4p. However, the impact of stochasticity in gene expression and hierarchy in regulatory mechanisms on the phenotypic level is not clearly understood.</p> <p>Results</p> <p>We address the question of quantifying the effect of stochasticity inherent in these regulatory mechanisms on the performance of various genes under the regulation of Mig1p and Gal4p using a dynamic stochastic model. The stochastic analysis reveals the importance of both the mechanisms of regulation for tight expression of genes in the <it>GAL </it>network. The mechanism involving Gal4p is the dominant mechanism, yielding low variability in the expression of <it>GAL </it>genes. The mechanism involving Mig1p is necessary to maintain the switch-like response of certain <it>GAL </it>genes. The number of binding sites for Mig1p and Gal4p further influences the expression of the genes, with extra binding sites lowering the variability of expression. Our experiments involving growth on various substrates show that the trends predicted in mean expression and its variability are transmitted to the phenotypic level.</p> <p>Conclusion</p> <p>The mechanisms involved in the transcriptional regulation and their variability set up a hierarchy in the phenotypic response to growth on various substrates. Structural motifs, such as the number of binding sites and the mechanism of regulation, determine the level of stochasticity and eventually, the phenotypic response.</p

    Pharmacokinetic/pharmacodynamic analysis of adjuvant pegylated interferon α-2b in patients with resected high-risk melanoma

    Get PDF
    PurposeHigh-dose pegylated interferon α-2b (peginterferon α-2b) significantly decreased disease recurrence in patients with resected stage III melanoma in a clinical study. We investigated the pharmacokinetics (PK) and safety of high-dose peginterferon α-2b in patients with high-risk melanoma.MethodsFor PK analysis, 32 patients received peginterferon α-2b 6 μg/(kg week) subcutaneously for 8 weeks (induction) then 3 μg/(kg week) for 4 weeks (maintenance). PK profiles were determined at weeks 1, 8, and 12. Exposure-response relationships between peginterferon α-2b and absolute neutrophil count (ANC) and alanine aminotransferase (ALT) level were also studied.ResultsPeginterferon α-2b was well-absorbed following SC administration, with a median T (max) of 24 h. Mean half-life estimates ranged from 43 to 51 h. The accumulation factor was 1.69 after induction therapy. PK parameters showed moderate interpatient variability. PK profiles were described by a one-compartmental model with first-order absorption and first-order elimination. Toxicity was profiled and was acceptable; observed side effects were similar to those previously described. Dose reduction produced proportional decreases in exposure and predictable effects on ANC in an Imax model; however, a PK/pharmacodynamic (PK/PD) relationship between peginterferon α-2b and ALT could not be established with high precision.ConclusionsPeginterferon α-2b was well-absorbed and sustained exposure to peginterferon α-2b was achieved with the doses tested. These data confirm and extend previous PK observations of peginterferon α-2b in melanoma and solid tumors. Our PK/PD model of exposure and ANC effect provides useful information for prediction of peginterferon α-2b-related hematologic toxicity

    Neurolymphomatosis mimicking neurosarcoidosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Both neurosarcoidosis and central nervous system lymphoma can be very difficult to diagnose. We describe the case of a patient in whom neurosarcoidosis was strongly suspected, but who was eventually found to have lymphoma. We believe the case to be of interest and practical value to neurologists, oncologists and internists with an interest in inflammatory diseases.</p> <p>Case presentation</p> <p>A diagnosis of neurosarcoidosis was considered in a 49-year-old Caucasian man on the basis of the following symptoms and indications: a cough, bilateral hilar lymphadenopathy confirmed by thoracic computed tomography, the development of an S1 radiculopathy, cerebrospinal fluid abnormalities (raised protein level), bilateral lung hilar and lachrymal gland uptake on a gallium scan, and erythema nodosum confirmed with skin biopsy. These were followed by the development of multiple cranial neuropathies, including seventh nerve palsy. Exhaustive further investigations yielded no evidence for an alternative diagnosis. Treatments with steroids, cyclophosphamide, intravenous immunoglobulin and finally infliximab were of no benefit. He eventually developed cutaneous nodules, a biopsy of which revealed lymphoma that proved resistant to therapy.</p> <p>Conclusion</p> <p>Constant diagnostic vigilance is required in disorders such as neurosarcoidosis.</p

    Chandrasekhar-Kendall functions in astrophysical dynamos

    Full text link
    Some of the contributions of Chandrasekhar to the field of magnetohydrodynamics are highlighted. Particular emphasis is placed on the Chandrasekhar-Kendall functions that allow a decomposition of a vector field into right- and left-handed contributions. Magnetic energy spectra of both contributions are shown for a new set of helically forced simulations at resolutions higher than what has been available so far. For a forcing function with positive helicity, these simulations show a forward cascade of the right-handed contributions to the magnetic field and nonlocal inverse transfer for the left-handed contributions. The speed of inverse transfer is shown to decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary Conference, to be published in PRAMANA - Journal of Physic

    Cardiovascular risk profile and management of atrial fibrillation in India: Real world data from RealiseAF survey

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia with high risk for many cardiovascular (CV) complications. Adherence to recommended management guidelines is important to avoid complications. In India, there is little knowledge on how AF is managed in real world. METHODS: This is a cross-sectional study of patients in India enrolled in RealiseAF survey between February 2010 and March 2010 with a diagnosis of AF within the last 12 months. RESULTS: From 15 centers, 301 patients {mean age 59.9 years (14.4); 52.5% males} were recruited. AF was controlled in 50% of patients with 77 (26.7%) in sinus rhythm and 67 (23.3%) with heart rate <80beats/min. Hypertension (50.8%), valvular heart disease (40.7%), heart failure (25.9%), and diabetes (20.4%) were the most common underlying CV diseases. Increased risk for stroke (CHADS2 score≥2) was present in 36.6%. Most of the patients (85%) were symptomatic. AF was paroxysmal, persistent, and permanent in 28.7%, 22.7%, and 34.3% respectively. In 14%, AF was diagnosed as first episode. Forty-six percent of patients had rate control, 35.2% rhythm control, 0.3% both strategies, and 18.4% received no therapy for AF before the visit. At the end of the visit, adoption to rate control strategy increased to 52.3% and patients with no therapy decreased to 7%. CONCLUSION: AF in India is not adequately controlled. Concomitant CV risk factors and risk of stroke are high. The study underscores the need for improved adoption of guideline-directed management for optimal control of AF and reducing the risk of stroke

    A microplate technique to simultaneously assay calcium accumulation in endoplasmic reticulum and SERCA release of inorganic phosphate

    Get PDF
    Traditional analyses of calcium homeostasis have separately quantified either calcium accumulation or release mechanisms. To define the system as a whole, however, requires multiple experimental techniques to examine both accumulation and release. Here we describe a technique that couples the simultaneous quantification of radio-labeled calcium accumulation in endoplasmic reticulum (ER) microsomes with the release of inorganic phosphate (Pi) by the hydrolytic activity of sarco-endoplasmic reticulum calcium ATPase (SERCA) all in the convenience of a 96-well format

    Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    Get PDF
    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana

    Get PDF
    The present study reports the role of auxin and its transport inhibitor during the establishment of an efficient and optimized protocol for the somatic embryogenesis in Digitalis trojana Ivan. Hypocotyl segments (5 mm long) were placed vertically in the Murashige and Skoog medium supplemented with three sets [indole-3-acetic acid (IAA) alone or 2,3,5-triiodobenzoic acid (TIBA) alone or IAA-TIBA combination] of formulations of plant growth regulators, to assess their differential influence on induction and proliferation of somatic embryos (SEs). IAA alone was found to be the most effective, at a concentration of 0.5 mg/l, inducing similar to 10 SEs per explant with 52% induction frequency. On the other hand, the combination of 0.5 mg/l of IAA and 1 mg/l of TIBA produced significantly fewer (similar to 3.6 SEs) and abnormal (enlarged, oblong, jar and cup-shaped) SEs per explant with 24% induction frequency in comparison to that in the IAA alone. The explants treated with IAA-TIBA exhibited a delayed response along with the formation of abnormal SEs. Our study revealed that IAA induces high-frequency SE formation when used singly, but the frequency gradually declines when IAA was coupled with increasing levels of TIBA. Eventually, our findings bring new insights into the roles of auxin and its polar transport in somatic embryogenesis of D. trojana
    corecore