77 research outputs found

    Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: results of the ICARIA genetic sub-study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertriglyceridemia (HTG) is a well-established independent risk factor for cardiovascular disease and the influence of several genetic variants in genes related with triglyceride (TG) metabolism has been described, including <it>LPL</it>, <it>APOA5 </it>and <it>APOE</it>. The combined analysis of these polymorphisms could produce clinically meaningful complementary information.</p> <p>Methods</p> <p>A subgroup of the ICARIA study comprising 1825 Spanish subjects (80% men, mean age 36 years) was genotyped for the <it>LPL</it>-HindIII (rs320), S447X (rs328), D9N (rs1801177) and N291S (rs268) polymorphisms, the <it>APOA5</it>-S19W (rs3135506) and -1131T/C (rs662799) variants, and the <it>APOE </it>polymorphism (rs429358; rs7412) using PCR and restriction analysis and TaqMan assays. We used regression analyses to examine their combined effects on TG levels (with the log-transformed variable) and the association of variant combinations with TG levels and hypertriglyceridemia (TG ≥ 1.69 mmol/L), including the covariates: gender, age, waist circumference, blood glucose, blood pressure, smoking and alcohol consumption.</p> <p>Results</p> <p>We found a significant lowering effect of the <it>LPL</it>-HindIII and S447X polymorphisms (<it>p </it>< 0.0001). In addition, the D9N, N291S, S19W and -1131T/C variants and the <it>APOE</it>-ε4 allele were significantly associated with an independent additive TG-raising effect (<it>p </it>< 0.05, <it>p </it>< 0.01, <it>p </it>< 0.001, <it>p </it>< 0.0001 and <it>p </it>< 0.001, respectively). Grouping individuals according to the presence of TG-lowering or TG-raising polymorphisms showed significant differences in TG levels (<it>p </it>< 0.0001), with the lowest levels exhibited by carriers of two lowering variants (10.2% reduction in TG geometric mean with respect to individuals who were homozygous for the frequent alleles of all the variants), and the highest levels in carriers of raising combinations (25.1% mean TG increase). Thus, carrying two lowering variants was protective against HTG (OR = 0.62; 95% CI, 0.39-0.98; <it>p </it>= 0.042) and having one single raising polymorphism (OR = 1.20; 95% CI, 1.39-2.87; <it>p </it>< 0.001) or more (2 or 3 raising variants; OR = 2.90; 95% CI, 1.56-5.41; <it>p </it>< 0.001) were associated with HTG.</p> <p>Conclusion</p> <p>Our results showed a significant independent additive effect on TG levels of the <it>LPL </it>polymorphisms HindIII, S447X, D9N and N291S; the S19W and -1131T/C variants of <it>APOA5</it>, and the ε4 allele of <it>APOE </it>in our study population. Moreover, some of the variant combinations studied were significantly associated with the absence or the presence of hypertriglyceridemia.</p

    Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.</p> <p>Results</p> <p>To find population-specific LD within small regions, we have devised an entropy-based method that utilizes differences in haplotype frequency between populations. The method has the advantages of incorporating multilocus association, conciliation with low allele frequencies, and independence from allele polarity, which are ideal for short haplotype analysis. The comparison of HapMap SNPs data from African and Caucasian populations with a median resolution size of ~23 kb gave us novel candidates as well as known selection targets. Enrichment analysis for the yielded genes showed associations with diverse diseases such as cardiovascular, immunological, neurological, and skeletal and muscular diseases. A possible scenario for a selective force is discussed. In addition, we have developed a web interface (ENIGMA, available at <url>http://gibk21.bse.kyutech.ac.jp/ENIGMA/index.html</url>), which allows researchers to query their regions of interest for population-specific LD.</p> <p>Conclusion</p> <p>The haplotype entropy method is powerful for detecting population-specific LD embedded in short regions and should contribute to further studies aiming to decipher the evolutionary histories of modern humans.</p

    Population analysis of vitamin D receptor polymorphisms and the role of genetic ancestry in an admixed population

    Get PDF
    The vitamin D receptor (VDR) is an essential protein related to bone metabolism. Some VDR alleles are differentially distributed among ethnic populations and display variable patterns of linkage disequilibrium (LD). In this study, 200 unrelated Brazilians were genotyped using 21 VDR single nucleotide polymorphisms (SNPs) and 28 ancestry informative markers. The patterns of LD and haplotype distribution were compared among Brazilian and the HapMap populations of African (YRI), European (CEU) and Asian (JPT+CHB) origins. Conditional regression and haplotype-specific analysis were performed using estimates of individual genetic ancestry in Brazilians as a quantitative trait. Similar patterns of LD were observed in the 5′ and 3′ gene regions. However, the frequency distribution of haplotype blocks varied among populations. Conditional regression analysis identified haplotypes associated with European and Amerindian ancestry, but not with the proportion of African ancestry. Individual ancestry estimates were associated with VDR haplotypes. These findings reinforce the need to correct for population stratification when performing genetic association studies in admixed populations

    Analysis of SNPs and Haplotypes in Vitamin D Pathway Genes and Renal Cancer Risk

    Get PDF
    In the kidney vitamin D is converted to its active form. Since vitamin D exerts its activity through binding to the nuclear vitamin D receptor (VDR), most genetic studies have primarily focused on variation within this gene. Therefore, analysis of genetic variation in VDR and other vitamin D pathway genes may provide insight into the role of vitamin D in renal cell carcinoma (RCC) etiology. RCC cases (N = 777) and controls (N = 1,035) were genotyped to investigate the relationship between RCC risk and variation in eight target genes. Minimum-p-value permutation (Min-P) tests were used to identify genes associated with risk. A three single nucleotide polymorphism (SNP) sliding window was used to identify chromosomal regions with a False Discovery Rate of <10%, where subsequently, haplotype relative risks were computed in Haplostats. Min-P values showed that VDR (p-value = 0.02) and retinoid-X-receptor-alpha (RXRA) (p-value = 0.10) were associated with RCC risk. Within VDR, three haplotypes across two chromosomal regions of interest were identified. The first region, located within intron 2, contained two haplotypes that increased RCC risk by approximately 25%. The second region included a haplotype (rs2239179, rs12717991) across intron 4 that increased risk among participants with the TC (OR = 1.31, 95% CI = 1.09–1.57) haplotype compared to participants with the common haplotype, TT. Across RXRA, one haplotype located 3′ of the coding sequence (rs748964, rs3118523), increased RCC risk 35% among individuals with the variant haplotype compared to those with the most common haplotype. This study comprehensively evaluated genetic variation across eight vitamin D pathway genes in relation to RCC risk. We found increased risk associated with VDR and RXRA. Replication studies are warranted to confirm these findings

    IMPROVE-PD Finder: A Web-Based Platform to Search and Share Peritoneal Dialysis Biobank, Registry, and Clinical Trial Metadata

    Get PDF
    Peritoneal dialysis (PD) is a life-sustaining kidney replacement therapy for the increasing number of people with permanent kidney failure across all age groups worldwide. Although PD potentially offers socioeconomic and performance benefits over hemodialysis, both treatments severely accelerate complications of chronic kidney disease, in particular atherosclerotic disease progression that worsens outcomes when compared with non-dialysis patients.1 Improved understanding of the underlying molecular pathogenic mechanisms should help in the design of interventions that improve outcomes.2 Current state of the art in PD research, however, faces major limitations. Although there are numerous in vitro and ex vivo studies on complex cellular and molecular networks active in PD3, 4, 5 and in vivo animal models of PD6, 7, 8 that provide in-depth pathomechanistic insights and allow identification of promising therapeutic targets,9,S1,S2 translation into clinical studies is a major challenge.S3 Patient studies that aim to substantiate experimental findings with definitive clinical outcome data are mostly small. As a result, they have not provided sufficient power to derive meaningful or clinically implementable conclusions.2 Basic PD technique has hardly changed over decades, despite high PD-related complication rates. Randomized prospective trials with hard clinical end points studied with adequate power are difficult to realize in a multifactorial setting with low patient numbers (360,000 worldwide) and are associated with high costs. To overcome these barriers intermediate end points such as PD effluent biomarkers associated (but not necessarily causally related) with hard clinical end points and composite end points are often studied.S4,S5 Equally, combining analyses of existing cohort studies and trial data through collaborative sharing might be of considerable benefit

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF

    J-PLUS: The Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg(2) mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 angstrom). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 angstrom Balmer break region, H delta, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB similar to 21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the delta z/(1 + z) similar to 0.005-0.03 precision level) for moderately bright (up to r similar to 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/lambda 3727, H alpha/lambda 6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z approximate to 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first similar to 1000 deg(2) of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg(2) for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Diagnosis and Treatment of Lichen Sclerosus

    Get PDF
    corecore