174 research outputs found
Ascaroside Expression in Caenorhabditis elegans Is Strongly Dependent on Diet and Developmental Stage
Background:
The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as “dauer pheromones” because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development.
Methodology/Principal Findings:
Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone). After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions.
Conclusions/Significance:
Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity) and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings from previous studies, our results show that the pheromone system of C. elegans mimics that of insects in many ways, suggesting that pheromone signaling in C. elegans may exhibit functional homology also at the sensory level. In addition, our results provide a strong foundation for future behavioral modeling studies
Antagonism of the discriminative effects of ethylketazocine, cyclazocine, and nalorphine in macaques
dl -Ethylketazocine (EKC, 0.01 mg/kg) and saline were established as discriminative stimuli for food-maintained responding in macaque monkeys. Thirty consecutive presses on a right or left lever were reinforced with food, contingent on whether EKC or saline were administered before the session. For tests of antagonism, naltrexone, or UM 979 [( l )-5,9-alpha-dimethyl-2-(3-furylmethyl)-2′-hydroxy-6,7-benzomorphan] was administered concomitantly with EKC, dl -cyclazocine, or nalorphine. Both antagonists blocked completely the EKC discriminative stimulus. The antagonism of the stimulus and rate-altering effects of EKC was surmountable, with considerable intersubject variability in the magnitude of the EKC dose increase required to overcome the blockade. Cyclazocine and nalophine, mixed agonist-antagonist opioids that share stimulus properties with EKC, were also susceptible to antagonism. Naltrexone antagonized completely the EKC stimulus effects of nalorphine; naltrexone and UM 979 antagonized completely the EKC stimulus effects of cyclazocine. Naltrexone antagonism of the cyclazocine stimulus was not surmountable, due to a lack of antagonism of the rate-decreasing effects of high cyclazocine doses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46433/1/213_2004_Article_BF00555213.pd
Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill
Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy
Quantifying bioirrigation using ecological parameters: a stochastic approach†
Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial community structure of sediments. Existing quantitative models of bioirrigation rely primarily on chemical, rather than ecological, information and the depth-dependence of bioirrigation intensity is either imposed or constrained through a data fitting procedure. In this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, volumes and wall surface areas of burrows, as well as their variabilities, as a function of sediment depth. Burrow networks of the following model organisms are considered: the polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. pugnax and U. pugilator, and the mud crabs Sesarma reticulatum and Eurytium limosum. Consortia of these model organisms are then used to predict burrow networks in a shallow water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth-dependent burrow surface areas and the radial diffusive length scale around the burrows. Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive length scales constrained by sulfate reduction rate profiles, agree with independent estimates of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O(2 )derived from the stochastic model, with the diffusion length scales constrained by O(2 )microprofiles measured at the sediment/water interface, are larger than irrigation coefficients based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation with depth of the O(2 )concentration within the burrows, which reduces the driving force for chemical transfer across the burrow walls. Correction for the depletion of O(2 )in the burrows results in closer agreement between stochastically-derived and chemically-derived irrigation coefficient profiles
Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico
Natural hydrocarbon seeps occur on the sea floor along continental margins, and account for up to 47% of the oil released into the oceans. Hydrocarbon seeps are known to support local benthic productivity, but little is known about their impact on photosynthetic organisms in the overlying water column. Here we present observations with high temporal and spatial resolution of chlorophyll concentrations in the northern Gulf of Mexico using in situ and shipboard flow-through fluorescence measurements from May to July 2012, as well as an analysis of ocean-colour satellite images from 1997 to 2007. All three methods reveal elevated chlorophyll concentrations in waters influenced by natural hydrocarbon seeps. Temperature and nutrient profiles above seep sites suggest that nutrient-rich water upwells from depth, which may facilitate phytoplankton growth and thus support the higher chlorophyll concentrations observed. Because upwelling occurs at natural seep locations around the world, we conclude that offshore hydrocarbon seeps, and perhaps other types of deep ocean vents and seeps at depths exceeding 1,000 m, may influence biogeochemistry and productivity of the overlying water column
The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses
Stable isotope and fatty acid analyses were used to study carbon sources for animals in a submerged plant bed. Epiphytes growing on Potamogeton perfoliatus, sand microflora, and alder leaves were the most important carbon sources. The most abundant macrophyte, P. perfoliatus was unimportant as a food source. Modelling (IsoSource) showed that epiphytes were the most important food source for the most abundant benthic invertebrates, the isopod Asellus aquaticus (annual mean contribution 64%), the amphipod Gammarus pulex (66%), and the gastropod Potamopyrgus antipodarum (83%). The mean annual contributions of sand microflora were, respectively, 21, 19, and 9%; and of alder leaves, 15, 15, and 8% for these three species. The relative importance of carbon sources varied seasonally. The relative contribution of epiphytes was lowest for all three grazer species in July: A. aquaticus 38%, G. pulex 43%, and P. antipodarum 42%. A decline in epiphyte biomass in summer may have caused this switch to less attractive food sources. P. perfoliatus provided habitat and shelter for consumers, but food was mainly supplied indirectly by providing space for attached epiphytes, which are fast-growing and provide a highly nutritious food source
A systematic review of clinical trials of pharmacological interventions for acute ischaemic stroke (1955-2008) that were completed, but not published in full
<p>Abstract</p> <p>Background</p> <p>We assessed the prevalence, and potential impact of, trials of pharmacological agents for acute stroke that were completed but not published in full. Failure to publish trial data is to be deprecated as it sets aside the altruism of participants' consent to be exposed to the risks of experimental interventions, potentially biases the assessment of the effects of therapies, and may lead to premature discontinuation of research into promising treatments.</p> <p>Methods</p> <p>We searched the Cochrane Stroke Group's Specialised Register of Trials in June 2008 for completed trials of pharmacological interventions for acute ischaemic stroke, and searched MEDLINE and EMBASE (January 2007 - March 2009) for references to recent full publications. We assessed trial completion status from trial reports, online trials registers and correspondence with experts.</p> <p>Results</p> <p>We identified 940 trials. Of these, 125 (19.6%, 95% confidence interval 16.5-22.6) were completed but not published in full by the point prevalence date. They included 16,058 participants (16 trials had over 300 participants each) and tested 89 different interventions. Twenty-two trials with a total of 4,251 participants reported the number of deaths. In these trials, 636/4251 (15.0%) died.</p> <p>Conclusions</p> <p>Our data suggest that, at the point prevalence date, a substantial body of evidence that was of relevance both to clinical practice in acute stroke and future research in the field was not published in full. Over 16,000 patients had given informed consent and were exposed to the risks of therapy. Responsibility for non-publication lies with investigators, but pharmaceutical companies, research ethics committees, journals and governments can all encourage the timely publication of trial data.</p
- …