53 research outputs found

    The design of an optimal Bonus-Malus System based on the Sichel distribution

    Get PDF
    This chapter presents the design of an optimal Bonus-Malus System (BMS) using the Sichel distribution to model the claim frequency distribution. This system is proposed as an alternative to the optimal BMS obtained by the traditional Negative Binomial model [19]. The Sichel distribution has a thicker tail than the Negative Binomial distribution and it is considered as a plausible model for highly dispersed count data. We also consider the optimal BMS provided by the Poisson-Inverse Gaussian distribution (PIG), which is a special case of the Sichel distribution. Furthermore, we develop a generalised BMS that takes into account both the a priori and a posteriori characteristics of each policyholder. For this purpose we consider the generalised additive models for location, scale and shape (GAMLSS) in order to use all available information in the estimation of the claim frequency distribution. Within the framework of the GAMLSS we propose the Sichel GAMLSS for assessing claim frequency as an alternative to the Negative Binomial Type I (NBI) regression model used by Dionne and Vanasse [9, 10]. We also consider the NBI and PIG GAMLSS for assessing claim frequency

    Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology

    Get PDF
    Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF

    Klein, Lawrence R. (Born 1920)

    No full text
    • …
    corecore