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The Design of an Optimal Bonus-Malus System
Based on the Sichel Distribution

George Tzougas and Nicholas Frangos

Abstract This paper presents the design of an optimal Bonus-Malus System (BMS)

using the Sichel distribution to model the claim frequency distribution. This system

is proposed as an alternative to the optimal BMS obtained by the traditional Negative

Binomial model (Lemaire, 1995). The Sichel distribution has a thicker tail than the

Negative Binomial distribution and it is considered as a plausible model for highly

dispersed count data. We also consider the optimal BMS provided by the Poisson-

Inverse Gaussian distribution(PIG), which is a special case of the Sichel distribution.

Furthermore, we develop a generalized BMS that takes into account both the a priori

and a posteriori characteristics of each policyholder. For this purpose we consider

the generalized additive models for location, scale and shape (GAMLSS) in order

to use all available information in the estimation of the claim frequency distribu-

tion. Within the framework of the GAMLSS we propose the Sichel GAMLSS for

assessing claim frequency as an alternative to the Negative Binomial Type I (NBI)

regression model used by Dionne and Vanasse (1989, 1992). We also consider the

NBI and PIG GAMLSS for assessing claim frequency.
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1 Introduction

A Bonus-Malus System (BMS) penalizes policyholders responsible for one or more

claims by a premium surcharge (malus) and rewards the policyholders who had a

claim-free year by awarding discount of the premium (bonus). An optimal BMS

is financially balanced for the insurer and fair for the policyholder. Optimal BMSs

can be broadly derived in two ways; based only on the a posteriori classification

criteria and based on both the a priori and the a posteriori classification criteria.

Typically, classification criteria such as the number of accidents of the policyholder

and the severity of each accident are considered as a posteriori, while variables such

as the characteristics of the driver and the automobile are considered as a priori

classification criteria.

Lemaire (1995) developed the design of an optimal BMS based on the number of

claims of each policyholder, following the game-theoretic framework introduced by

Bichsel (1964) and Buhlmann (1964). Given that the premium is proportional to the

unknown claim frequency and an estimate has to be employed instead, the insurer

faces a loss. Minimizing this loss gives the optimal estimate of the policyholder’s

claim frequency. Lemaire (1995) considered, among other BMS, the optimal BMS

obtained using the quadratic error loss function and the expected value premium

calculation principle approximating the claim frequency distribution by the Negative

Binomial. Walhin and Paris (1997) obtained an optimal BMS using as the claim

frequency distribution the Hofmann’s distribution, which encompasses the Negative

Binomial and the Poisson-Inverse Gaussian, and also using as a claim frequency

distribution a finite Poisson mixture. For more on BMS one can see Frangos and

Vrontos (2001), Coene and Doray (1996), Walhin and Paris (1997), Lemaire (1995),

and Denuit et al. (2007), Mahmoudvand and Hassani (2009), Mahmoudvand and

Aziznasiri (2013), Frangos et al. (2010) and Tzougas and Frangos (2013) and the

references therein.

Our first contribution is the development of an optimal BMS using the Sichel

distribution for assessing claim frequency. This system is proposed as an alterna-

tive to the optimal BMS provided by the Negative Binomial distribution (Lemaire,

1995). In fact the Sichel distribution (Sichel, 1985) differs from the standard Neg-

ative Binomial one by using an Generalized Inverse Gaussian (GIG) mixing distri-

bution for the parameter of the Poisson density, i.e. the expected claim frequency,

instead of the Gamma one, which the derivation of the Negative Binomial distri-

bution is based on. It is important to note that different parameterizations of the

Generalized Inverse Gaussian distribution may lead to other models. An additional

advantage of the Sichel model is that it can be considered as a candidate model

for highly dispersed count data. We also consider the optimal BMS obtained by the

Poisson-Inverse Gaussian distribution (PIG), which is a special case of the Sichel

distribution.

Our second contribution is the development of a generalized BMS that integrates

the a priori and the a posteriori information on an individual basis, extending the

framework developed by Dionne and Vanasse (1989, 1992). This is achieved by

using the generalized additive models for location, scale and shape (GAMLSS).
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The (GAMLSS) were introduced by Rigby and Stasinopoulos (2001, 2005) and

Akantziliotou, Rigby and Stasinopoulos (2002) as a way of overcoming some of the

limitations associated with the popular generalized linear models, GLM, and gener-

alized additive models, GAM. In the GAMLSS, the exponential family distribution

assumption for the response variable is relaxed and replaced by a general distribu-

tion family, including highly skewed continuous and discrete distributions. Thus, the

GAMLSS are suited to model highly dispersed count data. The GAMLSS are a gen-

eral framework for univariate regression analysis that allows modelling not only of

the mean (or location) but other parameters of the distribution of the response vari-

able as, linear and/or non-linear, parametric and/or additive non-parametric func-

tions of explanatory variables and/or random effects. Within the framework of the

GAMLSS we present the Sichel GAMLSS for assessing claim frequency as an al-

ternative to the Negative Binomial regression model of Dionne and Vanasse (1989,

1992). Furthermore, we consider the Negative Binomial Type I (NBI) and the PIG

GAMLSS for assessing claim frequency. With the aim of constructing an optimal

BMS by updating the posterior mean claim frequency, we adopt the parametric

linear formulation of these models and we allow only their mean parameter to be

modelled as a function of the significant a priori rating variables for the number of

claims. In the resulting generalized system, the premium is a function of the years

that the policyholder is in the portfolio, the number of accidents and the significant

a priori rating variables for the number of accidents.

The rest of the paper proceeds as follows. In Section 2 we consider the design

of an optimal BMS based on the a posteriori classification criteria. The design pre-

sented in Section 3 is based on both the a posteriori and the a priori classification

criteria. Section 4 contains an application to a data set concerning car-insurance

claims while Section 5 summarizes the main findings of the paper.

2 The Design of an Optimal BMS Based on the a Posteriori

Criteria

This Section presents the development of an optimal BMS using the Sichel distribu-

tion for assessing claim frequency. This system is proposed as an alternative to the

optimal BMS provided by the Negative Binomial distribution (see Lemaire, 1995).

In fact the Sichel distribution works very well when the data is highly dispersed. In

other situations, it works similar to the Negative Binomial distribution. Furthermore,

we consider the optimal BMS obtained by the Poisson-Inverse Gaussian (PIG) dis-

tribution, which is a special case of the Sichel distribution.
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2.1 The Negative Binomial Model

We consider first the design of an optimal BMS using the Negative Binomial dis-

tribution for assessing claim frequency. The portfolio is considered to be heteroge-

neous and all policyholders have constant but unequal underlying risks of having an

accident. We assume that the number of claims k given the parameter λ is distributed

as a Poisson(λ ),

P(k|λ ) = e−λ λ k

k!
, (1)

for k = 0,1,2,3, ... and λ > 0, where the parameter λ is the mean claim frequency

which varies from individual to individual, denoting the different underlying risk

of each policyholder having an accident. Following the setup of Lemaire (1995)

we consider that the structure function follows a Gamma distribution which has a

probability density function of the form

u(λ ) =
λ α−1τα exp(−τλ )

Γ (α)
, (2)

for λ > 0,α > 0,τ > 0, with mean E(λ ) = α
τ and variance Var(λ ) = α

τ2 . Then it can

be proved that the unconditional distribution of the number of claims k is a Negative

Binomial (α,τ) distribution with probability density function

P(k) =

(

k+α −1

k

)

pα qk
, p =

(

τ

1+ τ

)

,q =

(

1

1+ τ

)

, (3)

for k = 0,1,2,3, ..., where λ > 0,α > 0,τ > 0. The mean and the variance of k are

given by E(k) = µ = α
τ and Var(k) = α

τ

(

1+ 1
τ

)

respectively.

Consider a policyholder with claim history k1, ...,kt where ki is the number of

claims that the policyholder had in year i, i = 1, ..., t. Let us denote with K =
t

∑
i=1

ki

the total number of claims that the policyholder had in t years. Applying Bayes

theorem we obtain the posterior structure function of λ for a policyholder or a group

of policyholders with claim history k1, ...,kt , denoted as u(λ |k1, ...,kt) and given by

u(λ |k1, ...,kt) =
(τ + t)K+α λ K+α−1e−(τ+t)λ

Γ (α +K)
, (4)

which is the probability density function of a gamma (α +K,τ + t) .
Consequently, by using the quadratic error loss function the optimal choice of λ

at time t+1 for a policyholder with claim history k1, ...,kt , denoted as λ̂t+1, is the

mean of the posterior structure function given by Eq. (4), that is

λ̂t+1 (k1, ...,kt) =
K +α

τ + t
. (5)
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2.2 The Sichel Model

Let us consider now the construction of an optimal BMS using the Sichel distribu-

tion to model the claim frequency distribution. The Sichel is a compound Poisson

distribution and it can be derived by assuming that the mixing distribution of the

Poisson rate λ is a Generalized Inverse Gaussian distribution.

As previously, the portfolio is considered to be heterogeneous and all policy-

holders have constant but unequal underlying risks of having an accident and k|λ is

distributed according to a Poisson(λ ). Let us assume that the mean claim frequency

λ follows a Generalized Inverse Gaussian distribution, denoted as GIG(µ,σ ,ν),
with probability density function given by

u(λ ) =

(

c
µ

)ν
λ ν−1 exp

[

− 1
2σ

(

c
µ λ + µ

c
1
λ

)]

2Bν

[

1
σ

] , (6)

for λ > 0, where µ > 0,σ > 0 and −∞ < ν < ∞ and where c =
Bν+1( 1

σ )
Bν( 1

σ )
, where

2Bν (z) =

∞
∫

0

xν−1 exp

[

−1

2
z

(

x+
1

x

)]

dx,

is the modified Bessel function of the third kind of order ν with argument z. Eq. (6)

is obtained from a reparameterization of equation (2.2) of the Generalized Inverse

Gaussian distribution of Jørgensen (1982) or equation (15.74) from Johnson et al.

(1994) p 284. The mean and the variance of λ are given by E(λ ) = µ and Var(λ ) =

µ2
[

2σ(ν+1)
c

+ 1
c2 −1

]

respectively.

Considering the assumptions of the model, it can be proved that the unconditional

distribution of the number of claims k is given by a Sichel (µ,σ ,ν) distribution,

which has a probability density function of the form

P(k) =

( µ
c

)k
Bk+ν (a)

k!(aσ)k+ν
Bν

(

1
σ

)
, (7)

for k = 0,1,2,3, ..., where a2 = σ−2 +2µ (cσ)−1
.

The mean of k is equal to E(k) = µ and the variance of k is equal to Var(k) =

µ + µ2
[

2σ(ν+1)
c

+ 1
c2 −1

]

. Like the Negative Binomial, the variance of the Sichel

exceeds its mean, a desirable property which is common for all mixtures of Poisson

distributions and allows us to deal with data that present overdispersion.

Let us consider now the special case in which ν =−0.5. If we let ν =−0.5 in (6)

then the Generalized Inverse Gaussian distribution reduces to an Inverse Gaussian

distribution with pdf given by

u(λ ) =

√
µ√

2πσλ 3
exp

[

− 1

2σ µλ
(λ −µ)2

]

, (8)
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for λ > 0 and σ > 0, where E(λ ) = µ and where Var(λ ) = µ2σ . Another in-

teresting connection is the following. The special case ν = −0.5 in (7) gives the

parameterization of the Poisson-Inverse Gaussian (PIG) distribution used by Dean

et al. (1989). The probability density function of the PIG given by

P(k) =

(

2a

π

)
1
2 µke

1
σ B

k− 1
2
(a)

(aσ)k
k!

, (9)

for k = 0,1,2,3, ..., where a2 = σ−2 + 2
µ
σ . The mean and the variance of the PIG

distribution are given by E(k) = µ and Var(k) = µ + µ2σ respectively. Thus the

PIG(µ,σ) can arise if we assume that the mixing distribution of the Poisson rate λ
is an Inverse Gaussian distribution with probability density function given by Eq.

(8). Note also that the Poisson-gamma, i.e. Negative Binomial Type I is a limiting

case of (7) obtained by letting σ → ∞ for ν > 0.

In what follows we present the design of an optimal Bonus-Malus System (BMS)

using the Sichel distribution for assessing claim frequency. We also present the op-

timal BMS provided by the PIG distribution, which is a special case of the Sichel

distribution. Consider again a policyholder observed during t years and denote by

ki the number of accidents in which they were at fault in year i = 1, ..., t, so their

claim frequency history will be in a form of a vector (k1, ...,kt). Let us denote by

K =
t

∑
i=1

ki the total number of claims that this insured had in t years. Also, let ki|λ ,

for i = 1, ..., t, be distributed according to a Poisson (λ ) and let the prior structure

function of the parameter λ be the GIG(µ,σ ,ν). The posterior structure function

of λ for a policyholder or a group of policyholders with claim history k1, ...,kt , de-

noted as u(λ |k1, ...,kt) , is a GIG (w1,w2,K +ν) distribution with probability den-

sity function of the form

u(λ |k1, ...,kt) =

(

w1
w2

)
K+ν

2
λ K+ν−1

2BK+ν

(√
w1w2

) exp

[

−1

2

[

w1λ +w2
1

λ

]]

, (10)

for λ > 0, where w1 = c
σ µ + 2t and w2 = µ

σc
, with σ > 0,−∞ < ν < ∞ and c =

Bν+1[ 1
σ ]

Bν [ 1
σ ]

.

Subsequently, by using the quadratic error loss function, the optimal choice of

λ at time t+1 for a policyholder with claim history k1, ...,kt is the mean of the GIG

(w1,w2,K +ν), i.e. the posterior structure function given by Eq. (10), that is

λ̂t+1 (k1, ...,kt) =

∞
∫

0

λu(λ |k1, ...,kt)dλ

=

(√

w2

w1

)

BK+ν+1 (w1w2)

BK+ν (w1w2)
. (11)
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In the special case when ν =−0.5, i.e. when the simple Inverse Gaussian (given

by Eq. (8)) is the structure function of λ , the optimal choice of λ at time t+1 for a

policyholder with claim history k1, ...,kt is

λ̂t+1 (k1, ...,kt) =

∞
∫

0

λu(λ |k1, ...,kt)dλ

=

(

√

h2

h1

)

B
K+ 1

2
(h1h2)

B
K− 1

2
(h1h2)

, (12)

where h1 =
1

σ µ +2t and h2 =
µ
σ and where σ > 0.

3 The Design of an Optimal BMS Based on Both the a Priori and

the a Posteriori Criteria

In this section we develop a generalized BMS that integrates the a priori and the a

posteriori information on an individual basis. For this purpose we consider the gen-

eralized additive models for location, scale and shape, GAMLSS, (see Rigby and

Stasinopoulos, 2001, 2005 and Akantziliotou et al., 2002) in order to use all avail-

able information in the estimation of the claim frequency distribution. Within the

framework of the GAMLSS we propose the Sichel GAMLSS for assessing claim

frequency as an alternative to the Negative Binomial regression model of Dionne

and Vanasse (1989, 1992). Furthermore, we consider the NBI and the PIG GAMLSS

for approximating the number of claims. With the aim of constructing an optimal

BMS by updating the posterior mean claim frequency, we adopt the parametric lin-

ear formulation of these models and we allow only their mean parameter to be

modelled as a function of the significant a priori rating variables for the number

of claims. In this generalized BMS, the premium is a function of the years that the

policyholder is in the portfolio, the number of accidents and the explanatory vari-

ables for the number of accidents.

3.1 The Negative Binomial Model

This generalized optimal BMS is developed according to the design of Dionne and

Vanasse (1989, 1992), Frangos and Vrontos (2001)1 and Mahmoudvand and Has-

sani (2009). Consider a policyholder i with an experience of t periods whose number

of claims for period j, denoted as K
j

i are independent. If we assume that K
j

i follows

the Poisson distribution with parameter λ j, the expected number of claims for pe-

riod j, then the probability of having k accidents is

1 We use the same notation as in Frangos and Vrontos (2001).
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P
(

K
j

i = k
)

=
e−λ j (

λ j
)k

k!
,

for k = 0,1,2,3, ... and λ j > 0, where E(K j
i ) = λ j and Var(K j

i ) = λ j.

We can allow the λ j parameter to vary from one individual to another. Let λ
j

i =

exp
(

c
j
i β j
)

, where c
j
i =

(

c
j
i,1, ...,c

j
i,h

)

is the 1×h vector of h individual character-

istics, which represent different a priori rating variables and β j is the vector of the

coefficients. The exponential form ensures the non-negativity of λ
j

i . The conditional

to c
j
i probability that policyholder i will be involved in k accidents during the period

j will become

P
(

K
j

i = k|c j
i

)

=
e
−exp

(

c
j
i β j
)

[

exp
(

c
j
i β j
)]k

k!
, (13)

for k = 0,1,2,3, ... and λ
j

i > 0, where E(K j
i |c

j
i ) =Var(K j

i |c
j
i ) = λ

j
i = exp

(

c
j
i β j
)

.

For the determination of the expected number of claims in this model we assume

that the h individual characteristics provide enough information. However, if one as-

sumes that the a priori rating variables do not contain all the significant information

for the expected number of claims then a random variable εi has to be introduced

into the regression component. According to Gourieroux, Montfort and Trognon

(1984 a), (1984 b) we can write

λ
j

i = exp
(

c
j
i β j + εi

)

= exp
(

c
j
i β j
)

ui,

where ui = exp(εi) , yielding a random λ
j

i .

Assume that ui follows a Gamma distribution with probability density function

υ (ui) =
u

1
α −1

i
1
α

1
α exp

(

− 1
α ui

)

Γ
(

1
α

) , (14)

ui > 0,α > 0, with mean E(ui)= 1 and variance Var(ui)=α . Under this assumption

the conditional distribution of K
j

i |c
j
i becomes

P
(

K
j

i = k|c j
i

)

=

(

k+ 1
α −1

k

)

[

α exp
(

c
j
i β j
)]k

[

1+α exp
(

c
j
i β j
)]k+ 1

α

, (15)

which is a Negative Binomial Type I (NBI) distribution with parameters α and

exp
(

c
j
i β j
)

. It can be shown that the above parameterization does not affect the

results if there is a constant term in the regression. We choose E(ui) = 1 in order

to have E(εi) = 0. The mean and the variance of the NBI distribution are given
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by E(K j
i |c

j
i ) = µ

j
i = exp

(

c
j
i β j
)

and Var(K j
i |c

j
i ) = exp(c j

i β j)
[

α exp
(

c
j
i β j
)]

re-

spectively. More details about the Negative Binomial regression can be found in

Lawless (1987) and Hilbe (2011). Note also that Eq. (15) gives the parametric lin-

ear GAMLSS where only the mean parameter of the distribution of the response

variable, i.e. the NBI distribution, is modelled as a function of the explanatory vari-

ables.

We are going to build an optimal BMS based on the number of past claims and

on an individual’s characteristics in order to adjust that individual’s premiums over

time. The problem is to determine, at the renewal of the policy, the expected claim

frequency of the policyholder i for the period t + 1 given the observation of the

reported accidents in the preceding t periods and observable characteristics in the

preceding t +1 periods and the current period.

Consider a policyholder i with K1
i , ...,K

t
i claim history and c1

i , ...,c
t+1
i charac-

teristics and denote as K =
t

∑
j=1

K
j

i the total number of claims that they had. The

mean claim frequency of the individual i for period t +1 is λ t+1
i

(

ct+1
i ,ui

)

, a func-

tion of both the vector of the individual’s characteristics and a random factor ui with

probability density function given by Eq. (14). The posterior distribution of λ t+1
i is

obtained using Bayes theorem and is given by a Gamma with updated parameters
1
α +K and S

j
i , with pdf

f
(

λ t+1
i |K1

i , ...,K
t
i ;c1

i , ...,c
t
i

)

=

(

S
j
i

)K+ 1
α (

λ t+1
i

)K+ 1
α −1

exp
[

−S
j
i λ t+1

i

]

Γ
(

1
α +K

) , (16)

where S
j
i =

1
α +

t

∑
j=1

exp
(

c
j
i β j
)

exp(ct+1
i β t+1)

, with λ t+1
i > 0 and α > 0.

Using the quadratic loss function one can find that the optimal estimator of λ t+1
i

is the mean of the posterior structure function, given by

λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

=

∞
∫

0

λ t+1
i (ct+1

i ,ui) f
(

λ t+1
i |K1

i , ...,K
t
i ;c1

i , ...,c
t
i

)

dλ t+1
i

= exp
(

ct+1
i β t+1

)













1
α +

t

∑
j=1

K
j

i

1
α +

t

∑
j=1

exp
(

c
j
i β j
)













. (17)

This estimator defines the premium and corresponds to the multiplicative tariff for-

mula where the base premium is the a priori frequency exp
(

ct+1
i β t+1

)

and where

the Bonus-Malus factor is represented by the expression in brackets.
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Let us consider, as a special case, the situation in which the vector of the indi-

vidual characteristics remains the same from one year to the next, i.e. c1
i = c2

i =

...=ct+1
i = ci and β 1

z = β 2
z = ...= β t

z = β . Then λ̂ t+1
i is simplified to

λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

= exp(ciβ )













1
α +

t

∑
j=1

K
j

i

1
α + t exp(ciβ )













.

When t = 0, λ̂ 1
i

(

c1
i

)

= exp
(

c1
i β
)

, which implies that only a priori rating is used

in the first period. Moreover, when the regression component is limited to a constant

β0 one obtains

λ̂ t+1
i

(

K1
i , ...,K

t
i

)

= exp(β0)













1
α +

t

∑
j=1

K
j

i

1
α + t exp(β0)













,

which corresponds to the ‘univariate’, without regression component, model.

3.2 The Sichel Model

Let us now consider the generalized BMS obtained by using the Sichel paramet-

ric linear GAMLSS for assessing claim frequency. The Sichel distribution (Sichel,

1985) can be considered as a candidate model for highly dispersed claim count data

when the observed high dispersion cannot be efficiently handled by the Negative

Binomial regression model.

Consider a policyholder i with an experience of t periods whose number of claims

for period j, denoted as K
j

i are independent. We assume again that K
j

i follows the

Poisson distribution with parameter λ
j

i = exp
(

c
j
i β j
)

, where c
j
i =

(

c
j
i,1, ...,c

j
i,h

)

is

the vector of h individual characteristics and β j is the vector of the coefficients.

The conditional to c
j
i probability that policyholder i will be involved in k accidents

during the period j is given by Eq. (13).

For the determination of the expected number of claims in this model we assume

that the h individual characteristics provide enough information. Nevertheless, if

one assumes that the a priori rating variables do not contain all the significant in-

formation for the expected number of claims then a random variable εi has to be

introduced into the regression component, and for ui = exp(εi) we have

λ
j

i = exp
(

c
j
i β j + εi

)

= exp
(

c
j
i β j
)

ui,
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yielding a random λ
j

i . Let ui have a Generalized Inverse Gaussian distribution

GIG(1,σ ,ν). This parameterization ensures that E(ui)= 1. Note also that Var(ui)=
2σ(ν+1)

c
+ 1

c2 −1.

Considering the assumptions of the model, the conditional distribution of K
j

i |c
j
i

will be a Sichel
(

exp
(

c
j
i β j
)

,σ ,ν
)

distribution. The above parametrization of the

Sichel distribution ensures that the location parameter is the mean of K
j

i |c
j
i , given

by

E(K j
i |c

j
i ) = µ

j
i = exp

(

c
j
i β j
)

.

Note that the variance of K
j

i |c
j
i is given by

Var(K j
i |c

j
i ) = exp

(

c
j
i β j
)

+
(

exp
(

c
j
i β j
))2

[

2σ (ν +1)

c
+

1

c2
−1

]

, where c =
Bν+1[ 1

σ ]
Bν [ 1

σ ]
and Bν (z) is the modified Bessel function of the third kind of

order ν with argument z. This gives the parametric linear GAMLSS where only the

mean parameter of the distribution of the response, i.e. the Sichel distribution, is

modelled as a function of the significant a priori rating variables for the number of

claims.

Our goal is to build an optimal BMS which integrates a priori and a posteriori

information on an individual basis, using the Sichel GAMLSS for assessing claim

frequency. We will also consider the optimal BMS provided by the PIG GAMLSS,

which is a special case of the Sichel model for ν = −0.5. Similarly to the case of

the Negative Binomial model, the problem is to determine at the renewal of the

policy the expected claim frequency of the policyholder i for the period t +1 given

the observation of the reported accidents in the preceding t periods and observable

characteristics in the preceding t +1 periods and the current period.

Consider again a policyholder i with claim history K1
i , ...,K

t
i and c1

i , ...,c
t+1
i char-

acteristics and denote by K =
t

∑
j=1

K
j

i the total number of claims that they had. The

mean claim frequency of the individual i for period t +1 is λ t+1
i

(

ct+1
i ,ui

)

, a func-

tion of both the vector of individual characteristics and a random factor ui with pdf

GIG(1,σ ,ν). The posterior distribution of the expected claim frequency λ t+1
i for an

individual i observed over t + 1 periods with periods with K1
i , ...,K

t
i claim history

and c1
i , ...,c

t+1
i characteristics is obtained by using Bayes theorem and is given by a

GIG (w1,w2,K +ν), where w1 =

c+2σ

t

∑
j=1

exp
(

c
j
i β j
)

σ exp(ct+1
i β t+1)

and w2 =
exp(ct+1

i β t+1)
σc

.

Using the quadratic loss function one can find that the optimal estimator of λ t+1
i

is the mean of the GIG (w1,w2,K +ν), i.e. the posterior structure function, that is
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λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

=

∞
∫

0

λ t+1
i (ct+1

i ,ui) f
(

λ t+1
i |K1

i , ...,K
t
i ;c1

i , ...,c
t
i

)

dλ t+1
i

=

(√

w2

w1

)

KK+ν+1 (w1w2)

KK+ν (w1w2)
. (18)

When the vector of the individual characteristics remains the same from one year

to the next, λ̂ t+1
i , given by Eq. (18), is simplified to

λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

=

(√

ω2

ω1

)

KK+ν+1 (ω1ω2)

KK+ν (ω1ω2)
,

for ω1 =
c

σ exp(ciβ )
+2t and ω2 =

exp(ciβ )
σc

.

When t = 0, λ̂ 1
i

(

c1
i

)

= exp
(

c1
i β
)

, which implies that only a priori rating is used

in the first period. Moreover, when the regression component is limited to a constant

β0 one obtains

λ̂ t+1
i

(

K1
i , ...,K

t
i

)

=

(√

ω2

ω1

)

KK+ν+1 (ω1ω2)

KK+ν (ω1ω2)
,

for ω1 =
c

σ exp(β0)
+2t and ω2 =

exp(β0)
σc

, which corresponds to the ‘univariate’ ,with-

out regression component, model.

Let us consider now the special case when ν = −0.5. In this case, the poste-

rior structure function of λ t+1
i for a policyholder with K1

i , ...,K
t
i claim history and

c1
i , ...,c

t+1
i characteristics is a GIG

(

h1,h2,K − 1
2

)

, where h1 =

1+2σ

t

∑
j=1

exp
(

c
j
i β j
)

σ exp(ct+1
i β t+1)

and

h2 =
exp(ct+1

i β t+1)
σ .

Using again the quadratic error loss function, the optimal choice of λ̂t+1 for a

policyholder with claim history k1, ...,kt is the mean of the GIG
(

h1,h2,K − 1
2

)

, that

is

λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

=

∞
∫

0

λ t+1
i (ct+1

i ,ui) f
(

λ t+1
i |K1

i , ...,K
t
i ;c1

i , ...,c
t
i

)

dλ t+1
i

=

(

√

h2

h1

)

KK+ν+1 (h1h2)

KK+ν (h1h2)
. (19)
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When the vector of the individual characteristics remains the same from one year

to the next, λ̂ t+1
i is simplified to

λ̂ t+1
i

(

K1
i , ...,K

t
i ;c1

i , ...,c
t+1
i

)

=

(√

η2

η1

)

KK+ν+1 (η1η2)

KK+ν (η1η2)
,

for η1 =
1

σ exp(ciβ )
+2t and η2 =

exp(ciβ )
σ .

When t = 0, λ̂ 1
i

(

c1
i

)

= exp
(

c1
i β
)

, which implies that only a priori rating is used

in the first period. Moreover, when the regression component is limited to a constant

β0 one obtains

λ̂ t+1
i

(

K1
i , ...,K

t
i

)

=

(√

η2

η1

)

KK+ν+1 (η1η2)

KK+ν (η1η2)
,

for η1 =
1

σ exp(β0)
+2t and η2 =

exp(β0)
σ , which corresponds to the ‘univariate’ ,with-

out regression component, model.

4 Application

The data were kindly provided by a Greek insurance company and concern a mo-

tor third party liability insurance portfolio. The data refer to the policyholders at

the end of the year 2011 and specifically they describe the number of claims at

fault at that year. The data set consists of 4469 policyholders. The mean of claims

at fault is 0.138 and the variance is 0.73085. The a priori rating variables we em-

ploy are the sex of the driver, Bonus-Malus (BM) class and the horsepower of the

car. The drivers were divided into four categories according to the horsepower of

their car. Those who had a car with a horsepower between 0-33, between 34-66,

between 67-99 and between 100-132. This Bonus-Malus System has 20 classes and

the transition rules are described as follows: Each claim free year is rewarded by

one class discount and each accident in given year is penalized by one class. The

drivers were divided into five categories according to their BM class. Those who be-

long to BM classes 1 and 2, those who belong to BM classes 3-5, those who belong

to BM classes 6-9, those who belong to BM class 10 and those who belong to BM

classes 11-20. Firstly, the Negative Binomial, Poisson-Inverse Gaussian (PIG) and

Sichel distributions were fitted on the number of claims. Secondly, the NBI, PIG

and Sichel GAMLSS were applied to model claim frequency. For the GAMLSS

models we selected the parametric linear formulation considering a linear model in

the explanatory variables only for the log of their mean parameter in order to derive

optimal an optimal BMS by updating the posterior mean. The distributions and the

GAMLSS models were estimated using the GAMLSS package in the software R.

The ratio of Bessel functions of the third kind whose orders are different was cal-

culated using the HyperbolicDist package in software R. Subsequently, we are able

to compute the premiums determined by the optimal BMS based on the a posteri-
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ori criteria and the premiums determined by the optimal BMS based both on the a

priori and the a posteriori criteria according to the net premium principle and the

current methodology as presented in Sections 2 and 3 respectively. For the calcu-

lation of the premiums based on both criteria we assume that the sex of the driver

and the horsepower of the car remain the same from one year to the next and BM

class changes because the policy moves up or down according to the transition rules

described previously.

4.1 Claim Frequency Models Comparison

In this subsection we compare the fit of the models for the observed claim frequen-

cies in the portfolio of 4469 policyholders analyzed in the preceding section. These

models are all non-nested. In order to accept or reject some models, classical hy-

pothesis/specification tests for non-nested models can be used (see, Boucher et al.,

2007, 2008).

Firstly, we compare the non-nested distributions presented in Section 2. In this

case, information criteria like AIC or SBC are useful as well as the Vuong test

(Vuong, 1989). Table 1 (Panels A and B) reports our results with respect to the

aforementioned non-nested comparisons. Specifically, from Panel A and Panel B we

observe the superiority of the Poisson-Inverse Gaussian distribution vs the Negative

Binomial distribution. Overall, the best fit is given by the Sichel distribution.

Table 1 Comparison of Distributions for the Greek Data Set

Panel A: Based on AIC, SBC

Model df AIC SBC

Negative Binomial 2 29338.6 29353.9

PIG 2 29313.2 29328.5

Sichel 3 29311.9 29334.9

Panel B: Based on Vuong Test Statistic

Model 1 Model 2 Vuong Test p-value Decision

Negative Binomial PIG -2.38 0.00 PIG

PIG Sichel -0.71 0.00 Sichel

Secondly, we compare the non-nested GAMLSS models presented in Section 3

employing Global Deviance, AIC, SBC (see, Rigby and Stasinopoulos, 2009) and

the Vuong test. The results are displayed in Table 2. Specifically, when the Global

Deviance, AIC and SBC are used (Table 2, Panel A)) our findings suggest that the

PIG GAMLSS is superior to the NBI GAMLSS. However, when the Vuong test is

used, (Table 2, Panel B) we observe the superiority of the NBI GAMLSS vs the PIG

GAMLSS. Finally, with respect to the Global Deviance, AIC, SBC and the Vuong

test results, the Sichel GAMLSS provided the best fitting performances.
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Table 2 Comparison of GAMLSS Models for the Greek Data Set

Panel A: Based on Global Deviance, AIC, SBC

Model df Global Deviance AIC SBC

NBI 10 28417.9 28437.9 28514.5

PIG 10 28380.1 28380.1 28476.6

Sichel 11 28347.28 28369.3 28453.5

Panel B: Based on Vuong Test Statistic

Model 1 Model 2 Vuong Test p-value Decision

NBI PIG 26.45 0.00 NBI

NBI Sichel -2.46 0.00 Sichel

4.2 Optimal BMS Based on the a Posteriori Criteria

In this subsection we consider the premiums determined by the optimal BMS based

on the a posteriori classification criteria. In the following examples, the premiums

will be divided by the premium when t = 0, since we are not so much interested in

the absolute premium values as in the differences between various classes. We will

present the results so that the premium for a new policyholder is 100.

Let us consider a policyholder observed for 7 years whose number of claims

range from 1 to 6. In the following tables we compute this individual’s scaled premi-

ums for the case of the Negative Binomial, PIG and Sichel models respectively. We

consider first the Negative Binomial model, following Lemaire (1995). The maxi-

mum likelihood estimators of the parameters are τ̂ = 7.868 and α̂ = 1.089.

Table 3 Optimal BMS Based on the a Posteriori Classification Criteria, Negative Binomial Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 88.72 170.14 251.55 332.95 414.37 495.77 577.19

2 79.73 152.89 226.05 299.21 372.40 445.54 518.70

3 72.40 138.82 205.25 271.68 338.11 404.55 471.00

4 66.29 127.13 187.96 248.79 309.63 370.46 431.30

5 61.14 117.25 173.35 229.46 285.56 341.67 397.80

6 56.73 108.79 160.85 212.91 265.00 317.04 369.09

7 52.92 101.48 150.03 198.60 247.15 295.71 344.27

Let us consider next the Poisson-Inverse Gaussian (PIG) distribution. The max-

imum likelihood estimators of the parameters are µ̂ = 0.138 and σ̂ = 0.989. The

BMS derived by the PIG distribution will be defined by Eq. (12) and is presented in

Table 4.
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Table 4 Optimal BMS Based on the a Posteriori Classification Criteria, PIG Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 88.60 156.62 254.20 371.02 497.35 628.04 760.81

2 80.37 131.16 201.63 286.00 378.14 474.22 572.34

3 74.08 113.86 167.54 231.65 302.14 376.17 452.15

4 69.08 101.31 143.81 194.37 250.22 309.22 370.06

5 64.95 91.77 126.42 167.44 212.90 261.14 311.11

6 61.50 84.25 113.16 147.20 185.00 225.25 267.10

7 58.54 78.17 102.72 131.50 163.45 197.61 233.24

Finally, we consider the Sichel distribution. The maximum likelihood estimators

of the parameters are µ̂ = 0.138, σ̂ = 0.990 and ν̂ =−1.244 . This system provided

by this model will be defined by Eq. (11) and is presented in Table 5.

Table 5 Optimal BMS Based on the a Posteriori Classification Criteria, Sichel Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 94.32 158.79 262.10 400.55 561.44 733.96 912.19

2 88.83 134.68 201.93 289.09 390.60 500.82 615.94

3 83.96 118.78 166.88 227.55 298.02 375.08 456.26

4 79.71 107.34 143.89 188.97 241.06 298.24 358.87

5 76.00 98.62 127.58 162.66 202.94 247.21 294.36

6 72.72 91.71 115.37 143.60 175.81 211.21 249.02

7 69.82 86.05 105.86 129.17 155.60 184.63 215.69

It is interesting to compare the optimal BMS provided by the Sichel distribution

with the systems obtained from the Poisson-Inverse Gaussian and Negative Bino-

mial distributions respectively. From Table 3, Table 4 and Table 5 we observe that

these three systems are fair since if the policyholder has a claim free year the pre-

mium is reduced, while if the policyholder has one or more claims the premium is

increased. Furthermore, we notice that they can be considered generous with good

risks and strict with bad risks. For example, the bonuses given for the first claim free

year are 11.28%, 11.4% and 5.68% of the basic premium in the case of the Negative

Binomial (Table 3), Poisson-Inverse Gaussian (Table 4) and Sichel (Table 5) models

respectively. On the contrary, policyholders who had one claim over the first year of

observation will have to pay a malus of 70.14%, 56.62% and 58.79% of the basic

premium in the case of the Negative Binomial, Poisson-Inverse Gaussian and Sichel

models respectively. Also, policyholders who had one claim over the second year of
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observation will have to pay a malus of 51.55%, 54.20% and 62.10% in the case of

the Negative Binomial, Poisson-Inverse Gaussian model and Sichel models respec-

tively. Overall, we observe that the bonuses given for the first claim free year in the

case of the Negative Binomial model are the highest among three models. However,

the high rate of malus for large number of claims in the case of the Sichel model

is a superiority. The features of these models must be taken under consideration for

determining bonus and malus in practice.

4.3 Optimal BMS Based on Both the a Priori and the a Posteriori

Criteria

In this subsection we consider the premiums determined by the generalized optimal

BMS that integrates the a priori and the a posteriori information on an individual

basis. In what follows the premiums will be divided again by the premium when

t = 0, as it is interesting to see the percentage change in the premiums after one or

more claims.

Let us see an example in order to understand better how this BMS works. Con-

sider a group of policyholders who share the following common characteristics.

The policyholder i is a woman who has a car with horsepower between 0-33 and her

Bonus-Malus (BM) class varies over time, starting from BM class 1. Implement-

ing the NBI GAMLSS we found that α̂ = 0.655, implementing the PIG GAMLSS

we found that σ̂ = 0.725, and implementing the Sichel GAMLSS we found that

σ̂ = 0.889 and ν̂ = −3.023. As we have already mentioned, the mean (or loca-

tion) parameter of these models is given by E(K j
i |c

j
i ) = µ

j
i = exp

(

c
j
i β j
)

, where

c
j
i

(

c
j
i,1, ...,c

j
i,h

)

is the 1× h vector of h individual characteristics, which represent

different a priori rating variables and β j is the vector of the coefficients. Note also

that all the explanatory variables of these models were statistically significant at a

5% threshold. The estimation of the vector β j and therefore of the mean parame-

ter, µ̂
j

i , for the NBI, PIG and Sichel distributions respectively led to the following

results presented in Table 6.

Table 6 Estimation of the Mean Parameter, Women, Horse Power 0-33

BM Category NBI PIG Sichel

1 0.1339 0.1323 0.1314

2 0.2459 0.2483 0.2514

3 0.3123 0.3088 0.3073

4 0.0523 0.0515 0.0490

5 0.9571 1.0610 1.0642
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Based on the above estimates for this group of individuals we are now able to

derive the generalized optimal BMSs resulting from the Eqs (17, 19 and 18) for the

case of the NBI, PIG and Sichel models respectively. These BMSs are presented in

Table 7. Note that the explanatory variable Bonus-Malus class varies substantially

depending on the number of claims of policyholder i for period j. For this reason in

Table 7 we specify the exact order of the claims history in order to derive the scaled

premiums that must be paid by this group of policyholders, assuming that the age

of the policy is up to 2 years. For example. consider a policyholder who at t = 2

has a total number of claims K = 2. From Table 7 we observe that if she has claim

frequency history k1 = 0,k2 = 2 then her premium increases from 100 to 361.15,

297.74 and 371.50, in the case of the NBI, PIG and Sichel models respectively. On

the contrary, if she has claim frequency history k1 = 1,k2 = 1 then her premium

increases from 100 to 339.90, 265.83 and 318.49 in the case of the NBI, PIG and

Sichel models respectively.

Table 7 Women, Horse Power 0-33, Varying Bonus-Malus Class

Year Number of Claims kt Optimal BMS Optimal BMS Optimal BMS

NBI PIG Sichel

t=0 k0=0 100 100 100

t=1

k1=0

k1=1

k1=2

91.93

279.57

390.29

91.60

247.92

347.12

98.31

297.21

463.42

t=2

k1=0,k2=0

k1=0,k2=1

k1=0,k2=2

85.06

258.69

361.15

85.01

220.31

297.74

92.77

257.80

371.50

t=2

k1=1,k2=0

k1=1,k2=1

k1=1,k2=2

132.56

339.90

554.13

107.47

265.83

423.95

121.53

318.49

520.57

t=2

k1=2,k2=0

k1=2,k2=1

k1=2,k2=2

339.90

554.13

676.59

265.83

423.95

527.64

318.49

520.57

672.74

Consider now another group of policyholders who share the following common

characteristics. The policyholder i is now a man who has a car with horsepower

between 0-33 and his Bonus-Malus class varies over time, starting from BM class

1. The estimation of the vector β j and thus of the mean parameter, µ̂
j

i , of the NBI,

PIG and Sichel distributions respectively led to the following results displayed in

Table 8.
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Table 8 Estimation of the Mean Parameter, Men, Horse Power 0-33

BM Category NBI PIG Sichel

1 0.1237 0.1215 0.1194

2 0.2272 0.2282 0.2286

3 0.2886 0.2837 0.2795

4 0.0483 0.0472 0.0446

5 0.8844 0.9745 0.9678

Based on the above estimates for this new group of policyholders we can derive

the generalized optimal BMSs provided by the Eqs (17, 19 and 18) for the case of

the NBI, PIG and Sichel models respectively. In Table 9 we specify again the exact

order of the claims history in order to compute the scaled premiums that must be

paid by this new group of policyholders assuming again that the age of the policy

is up to 2 years. For instance, consider again a policyholder who at t = 2 has a total

number of claims K = 2. From Table 9 we can see that if he has claim frequency

history k1 = 0,k2 = 2 then his premium increases from 100 to 365.29, 304.69 and

384.82, in the case of the NBI, PIG and Sichel models respectively. On the contrary,

if he has claim frequency history k1 = 1,k2 = 1 then his premium increases from

100 to 345.13, 273.55 and 331.80 in the case of the NBI, PIG and Sichel models

respectively.

Table 9 Men, Horse Power 0-33, Varying Bonus-Malus Class

Year Number of Claims kt Optimal BMS Optimal BMS Optimal BMS

NBI PIG Sichel

t=0 k0=0 100 100 100

t=1

k1=0

k1=1

k1=2

92..49

281.29

392.70

92.21

250.58

351.99

98.85

301.71

474.61

t=2

k1=0,k2=0

k1=0,k2=1

k1=0,k2=2

86.04

261.66

365.29

85.98

224.27

304.69

93.72

263.82

384.82

t=2

k1=1,k2=0

k1=1,k2=1

k1=1,k2=2

134.60

345.13

562.66

109.89

273.55

438.37

124.95

331.80

548.06

t=2

k1=2,k2=0

k1=2,k2=1

k1=2,k2=2

345.13

562.66

687.00

273.55

438.37

547.37

331.80

548.06

713.46

Overall, from Table 7 and Table 9 we observe that the premiums that should be

paid by a woman who has a car with horsepower between 0-33 and her Bonus-

Malus class varies over time do not differ much from those that should be paid by

a man who shares common characteristics. Note that other combinations of a priori

characteristics could be used and also different claim frequency histories. Note also
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that the optimal BMSs resulting from Eqs (17, 19 and 18) can be computed using

other characteristics that vary by times such us age of drivers, age of car and mileage.

It is interesting to compare these BMSs with those obtained when only the a

posteriori classification criteria are used. Using these BMSs we saw from Table

3, Table 4 and Table 5 that a policyholder who at t = 2 has two claims faces a

malus of 126.05%, 101.63% and 101.93% of the basic premium in the case of the

Negative Binomial, Poisson-Inverse Gaussian and Sichel distributions respectively.

Using the generalized optimal BMSs based both on the a priori and the a posteriori

classification criteria we consider first a woman, who has a car with horsepower

between 0-33 and her Bonus-Malus class varies over time, starting from BM class

1. From Table 7 we saw that if at t = 2 she has claim frequency history k1 = 0,k2 = 2,

she faces a malus of 261.15%, 197.74% and 271.50% of the basic premium in the

case of the NBI, PIG and Sichel GAMLSS respectively, while if she has k1 = 1,k2 =
1 claim frequency history then she faces a malus of 239.90%, 165.83% and 218.49%

of the basic premium in the case of the NBI, PIG and Sichel GAMLSS respectively.

Consider also a man, who has a car with horsepower between 0-33 and his Bonus-

Malus class varies over time, starting from BM class 1. From Table 9 we saw that

if at t = 2 he has claim frequency history k1 = 0,k2 = 2, he faces a malus 265.29%,

204.69% and 284.82% of the basic premium, in the case of the NBI, PIG and Sichel

GAMLSS respectively, while if he has k1 = 1,k2 = 1 claim frequency history then

he faces a malus of 245.13%, 173.55% and 231.80% of the basic premium in the

case of the NBI, PIG and Sichel GAMLSS respectively. These systems are more

fair since they consider all the important a priori and a posteriori information for

the number of claims of each policyholder in order to estimate their risk of having

an accident and thus they permit the differentiation of the premiums for various

number of claims based on the expected claim frequency of each policyholder as

this is estimated both from the a priori and the a posteriori classification criteria.

5 Conclusions

In this paper we developed the design of an optimal BMS assuming that the number

of claims is distributed according to a Sichel distribution. This system was proposed

as an alternative to the optimal BMS resulting from the traditional Negative Bi-

nomial distribution, which cannot handle data with a long tail efficiently. We also

considered the optimal BMS provided by the Poisson-Inverse Gaussian distribu-

tion, which is a special case of the Sichel distribution. These systems were obtained

by updating the posterior mean claim frequency, following the setup of Lemaire

(1995). We have also considered a generalized BMS that integrates the a priori and

the a posteriori information on a individual basis, following the framework devel-

oped by Dionne and Vanasse (1989, 1992). This was achieved by using the Sichel

GAMLSS to approximate the number of claims as an alternative to the Negative

Binomial regression model used by Dionne and Vanasse (1989, 1992). The new

model offers the advantage of being able to model count data with high dispersion.
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Furthermore, we considered the NBI GAMLSS and the PIG GAMLSS for assess-

ing claim frequency. With the aim of constructing an optimal BMS by updating the

posterior mean claim frequency, we adopted the parametric linear formulation and

we allowed only the mean parameter to be modelled as a function of the signifi-

cant a priori rating variables for the number of claims. The modeling results showed

that the Sichel distribution and the Sichel GAMLSS provided the best fitting perfor-

mances for the data set examined in this study. The optimal BMSs obtained have all

the attractive properties of the BMSs developed by Lemaire (1995) and Dionne and

Vanasse (1989, 1992).

The above design can be employed by insurance companies which are free to

set up their own tariff structures and rating policies according to recent European

directives. A possible line of future research is the integration of claim severity into

the BMSs presented above (see for example Frangos and Vrontos, 2001).
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