94 research outputs found
Surgical treatment of scoliosis in a rare disease: arthrogryposis
<p>Abstract</p> <p>Background</p> <p>The reported incidence of scoliosis in arthrogryposis varies from 30% to 67% and, in most cases, the curves progress rapidly and become stiff from early age.</p> <p>The authors report six cases of scoliosis in arthrogryposis to assess the role of surgical treatment.</p> <p>Methods</p> <p>Six cases (3 males, 3 females; mean age at surgery 13.2 years) with arthrogryposis multiplex congenita associated with the characteristic amyoplasia were reviewed: they were operated on for scoliosis at the authors' Spine Surgery Department between 1987 and 2008.</p> <p>Surgery was performed using the Harrington-Luque instrumentation (2 cases), the Luque system (1), a hybrid segmental technique with hooks and screws (1) and spinal anchoring with pedicle screws (2).</p> <p>Results</p> <p>The patients were clinically and radiologically reviewed at a mean follow-up of 4.2 years, ± 2.7 (range, 1 to 9 years). Three minor postoperative complications were encountered; a long-term pulmonary complication was seen in one case after reintervention and was successfully resolved after 10 days. Surgery was successful in the other 5 cases, where solid arthrodesis was achieved and no significant curve progression was observed at follow-up.</p> <p>Conclusions</p> <p>The experience acquired with the present case series leads the authors to assert that prompt action should be taken when treating such aggressive forms of scoliosis. In case of mild spinal deformities in arthrogryposis, brace treatment should be attempted, the evolution of the curves being unpredictable; however, when the curve exceeds 40° and presents with marked hyperkyphosis, hyperlordosis or pelvic obliquity, surgery should not be delayed.</p
Conserved Orb6 Phosphorylation Sites Are Essential for Polarized Cell Growth in Schizosaccharomyces pombe
The Ndr-related Orb6 kinase is a key regulator of polarized cell growth in fission yeast, however the mechanism of Orb6 activation is unclear. Activation of other Ndr kinases involves both autophosphorylation and phosphorylation by an upstream kinase. Previous reports suggest that the Nak1 kinase functions upstream from Orb6. Supporting this model, we show that HA-Orb6 overexpression partially restored cell polarity in nak1 ts cells. We also demonstrated by coimmunoprecipitation and in vitro binding assays that Nak1 and Orb6 physically interact, and that the Nak1 C-terminal region is required forNak1/Orb6 complex formation in vivo. However, results from in vitro kinase assays did not show phosphorylation of recombinant Orb6 by HA-Nak1, suggesting that Orb6 activation may not involve direct phosphorylation by Nak1. To investigate the role of Orb6 phosphorylation and activity, we substituted Ala at the ATP-binding and conserved phosphorylation sites. Overexpression of kinase-dead HA-Orb6K122A in wild-type cells resulted in a loss of cell polarity, suggesting that it has a dominant-negative effect, and it failed to rescue the polarity defect of nak1 or orb6 ts mutants. Recombinant GST-Orb6S291A did not autophosphorylate in vitro suggesting that Ser291 is the primary autophosphorylation site. HA-Orb6S291A overexpression only partially rescued the orb6 polarity defect and failed to rescue the nak1 defect, suggesting that autophosphorylation is important for Orb6 function. GST-Orb6T456A autophosphorylated in vitro, indicating that the conserved phosphorylation site at Thr456 is not essential for kinase activity. However, HA-Orb6T456A overexpression had similar effects as overexpressing kinase-dead HA-Orb6K122A, suggesting that Thr456 is essential for Orb6 function in vivo. Also, we found that both phosphorylation site mutations impaired the ability of Myc-Nak1 to coimmunoprecipitate with HA-Orb6. Together, our results suggest a model whereby autophosphorylation of Ser291 and phosphorylation of Thr456 by an upstream kinase promote Nak1/Orb6 complex formation and Orb6 activation
Dengue-2 Structural Proteins Associate with Human Proteins to Produce a Coagulation and Innate Immune Response Biased Interactome
<p>Abstract</p> <p>Background</p> <p>Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem.</p> <p>Methods</p> <p>A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology.</p> <p>Results</p> <p>Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis.</p> <p>Conclusions</p> <p>Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.</p
SOSORT consensus paper: school screening for scoliosis. Where are we today?
This report is the SOSORT Consensus Paper on School Screening for Scoliosis discussed at the 4th International Conference on Conservative Management of Spinal Deformities, presented by SOSORT, on May 2007. The objectives were numerous, 1) the inclusion of the existing information on the issue, 2) the analysis and discussion of the responses by the meeting attendees to the twenty six questions of the questionnaire, 3) the impact of screening on frequency of surgical treatment and of its discontinuation, 4) the reasons why these programs must be continued, 5) the evolving aim of School Screening for Scoliosis and 6) recommendations for improvement of the procedure
Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species
Antivenoms are fundamental in the therapy for snakebites. In elapid venoms, there are toxins,
e.g. short-chain α-neurotoxins, which are quite abundant, highly toxic, and consequently play
a major role in envenomation processes. The core problem is that such α-neurotoxins are
weakly immunogenic, and many current elapid antivenoms show low reactivity towards them.
We have previously developed a recombinant consensus short-chain α-neurotoxin (ScNtx)
based on sequences from the most lethal elapid venoms from America, Africa, Asia, and
Oceania. Here we report that an antivenom generated by immunizing horses with ScNtx can
successfully neutralize the lethality of pure recombinant and native short-chain α-neurotoxins,
as well as whole neurotoxic elapid venoms from diverse genera such as Micrurus,
Dendroaspis, Naja, Walterinnesia, Ophiophagus and Hydrophis. These results provide a proof-ofprinciple
for using recombinant proteins with rationally designed consensus sequences as
universal immunogens for developing next-generation antivenoms with higher effectiveness
and broader neutralizing capacity.Universidad de Costa Rica/[741-B7-608]/UCR/Costa RicaDireccion General de Asuntos del Personal Academico/[IN203118]/DGAPA/MéxicoDireccion General de Asuntos del Personal Academico/[IN207218]/DGAPA/MéxicoUCR::VicerrectorÃa de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
- …