17 research outputs found

    In Vitro and In Vivo Efficacy of Ether Lipid Edelfosine against Leishmania spp. and SbV-Resistant Parasites

    Get PDF
    Leishmaniasis represents a major international health problem, has a high morbidity and mortality rate, and is classified as an emerging and uncontrolled disease by the World Health Organization. The migration of population from endemic to nonendemic areas, and tourist activities in endemic regions are spreading the disease to new areas. Unfortunately, treatment of leishmaniasis is far from satisfactory, with only a few drugs available that show significant side-effects. Here, we show in vitro and in vivo evidence for the antileishmanial activity of the ether phospholipid edelfosine, being effective against a wide number of Leishmania spp. causing cutaneous, mucocutaneous and visceral leishmaniasis. Our experimental mouse and hamster models demonstrated not only a significant antileishmanial activity of edelfosine oral administration against different wild-type Leishmania spp., but also against parasites resistant to pentavalent antimonials, which constitute the first line of treatment worldwide. In addition, edelfosine exerted a higher antileishmanial activity and a lower proneness to generate drug resistance than miltefosine, the first drug against leishmaniasis that can be administered orally. These data, together with our previous findings, showing an anti-inflammatory action and a very low toxicity profile, suggest that edelfosine is a promising orally administered drug for leishmaniasis, thus warranting clinical evaluation

    Temporins, small antimicrobial peptides with leishmanicidal activity

    No full text
    Leishmaniasis encompasses a wide range of infections caused by the human parasitic protozoan species belonging to the Leishmania genus. It appears frequently as an opportunistic disease, especially in virus-infected immunodepressed people. Similarly to other pathogens, parasites became resistant to most of the first-line drugs. Therefore, there is an urgent need to develop antiparasitic agents with new modes of action. Gene-encoded antimicrobial peptides are promising candidates, but so far only a few of them have shown anti-protozoa activities. Here we found that temporins A and B, 13-amino acid antimicrobial peptides secreted from the skin of the European red frog Rana temporaria, display anti-Leishmania activity at micromolar concentrations, with no cytolytic activity against human erythrocytes. To the best of our knowledge, temporins represent the shortest natural peptides having the highest leishmanicidal activity and the lowest number of positively charged amino acids (a single lysine/arginine) and maintain biological function in serum. Their lethal mechanism involves plasma membrane permeation based on the following data. (i) They induce a rapid collapse of the plasma membrane potential. (ii) They induce the influx of the vital dye SYTOX Green. (iii) They reduce intracellular ATP levels. (iv) They severely damage the membrane of the parasite, as shown by transmission electron microscopy. Besides giving us basic important information, the unique properties of temporins, as well as their membranolytic effect, which should make it difficult for the pathogen to develop resistance, suggest them as potential candidates for the future design of antiparasitic drugs with a new mode of action

    Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H.

    No full text
    Antimicrobial peptides (AMPs) are evolutionarily old components of innate immunity found in all living pluricellular organisms. Interestingly, some organisms express families of AMPs with only a slight variation among their members, possibly to increase their spectrum of activity. Despite the growing body of knowledge about their biological activity and mode of action on bacteria, only a few of them have been tested on Leishmania, a worldwide spread protozoan pathogen, and the parameters contributing to this activity are yet to be determined. We report on the anti-Leishmania activity and mode of action of bombinins H2 and H4 isolated from the skin secretion of the frog Bombina variegata. H4, the most active, is the first natural AMP of animal origin with a single L- to D-amino acid isomerization. Membrane depolarization and membrane permeation assays, as well as electron microscopy, suggest that the lethal mechanism involves plasma membrane permeation and/or disruption. To better understand the enhanced activity of H4, we determined the peptide's structure in membranes mimicking those of mammals, bacteria, and Leishmania by using ATR-FTIR and CD spectroscopies and assessed their membrane binding by using surface plasmon resonance. The data reveal that (i) H2 but not H4 partially aggregates in membranes mimicking those of Leishmania, (ii) H2 is slightly more helical than H4 in all membranes, and (iii) H4 binds the Leishmania model membrane approximately 5-fold better than H2. This study highlights the importance of a single alpha-amino acid epimerization as a tool used by nature to modulate the activity of AMPs. In addition, our findings suggest bombinins H as potential templates for the development of new drugs with a new mode of action against Leishmania
    corecore