30 research outputs found

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    Numerical and experimental evaluation of the dynamic performance of kinematically redundant parallel manipulators

    No full text
    International audienceParallel manipulators present high load capacity and rigidity, among other advantages, when compared to the serial manipulators. Due to their kinematic architecture, their parts are lighter. This characteristic may be an asset for designing high dynamic performance manipulators. However, parallel manipulators suffer from singularities in their workspace. This drawback can be circumvented by the use of kinematic redundancies. Due to the presence of these redundancies, the inverse kinematic problem presents an infinite number of solutions. The selection of a single solution among the possible ones is denoted as redundancy resolution. In this manuscript, the impact of several levels of kinematic redundancy on the dynamic performance of a planar parallel manipulator, the 3PRRR, is numerically and experimentally investigated. The kinematic redundancy of this manipulator can be added by the actuation of the active prismatic joints (P). Two redundancy resolution schemes are proposed using a multiobjective optimization problem. Based on the numerical and experimental results, one can conclude that the use of a proper redundancy resolution scheme can considerably reduce the maximum required torque to perform a predefined task
    corecore