35 research outputs found

    Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    Get PDF
    Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors

    Lightning-induced plasma turbulence and ion heating in equatorial ionospheric depletions

    No full text
    International audienceA wide range of plasma instabilities exist in various regions of the terrestrial ionosphere, leading to the development of plasma turbulence, in particular close to the lower-hybrid frequency—the frequency of a longitudinal oscillation of ions and electrons in a magnetized plasma that must be near perpendicular to the magnetic field. Most observations have been carried out in the auroral regions, where intense lower-hybrid emissions are frequently observed, possibly producing solitary structures1 and ion heating2,3,4. Lower-hybrid turbulence with a smaller intensity has also been observed at mid- and low latitudes above thunderstorms5,6 and was shown to be triggered by the electromagnetic whistler wave generated by the lightning current. Here we present observations of equatorial plasma waves that demonstrate the existence of lower-hybrid solitary structures and the simultaneous occurrence of ion heating in deep, large-scale equatorial plasma depletions that form at night during disturbed geomagnetic conditions. These phenomena follow the development of lower-hybrid turbulence triggered by lightning-induced whistlers, revealing a new coupling process between the troposphere and the ionosphere. Since the energy source of the equatorial solitary structures is different from that involved in the auroral processes, our findings support the idea that the formation of lower-hybrid solitary structures may be a universal mechanism operating in inhomogeneous, magnetized plasma and possibly leading to ion heating and acceleration

    Extinction of species by periodic comet showers

    No full text
    A 26-Myr periodicity has recently been seen in the fossil record of extinction in the geological past. At least two of these extinctions are known to be associated with the impact on the Earth of a comet or asteroid with a diameter of a few kilometres. We propose that the periodic events are triggered by an unseen companion to the Sun, travelling in a moderately eccentric orbit, which at its closest approach (perihelion) passes through the 'Oort cloud' of comets which surrounds the Sun. During each passage this unseen solar companion perturbs the orbits of these comets, sending a large number of them (over 1 x 10{sup 9}) into paths which reach the inner Solar System. Several of these hit the Earth, on average, in the following million years. At present the unseen companion should be approximately at its maximum distance from the Sun, {approx}2.4 light yr, and it will present no danger to the Earth until approximately AD 15,000,000
    corecore