98 research outputs found

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth

    Get PDF
    Wig-1 is a transcriptional target of the p53 tumor suppressor and encodes an mRNA stability-regulating protein. We show here that Wig-1 knockdown causes a dramatic inhibition of N-Myc expression and triggers differentiation in neuroblastoma cells carrying amplified N-Myc. Transient Wig-1 knockdown significantly delays development of N-Myc-driven tumors in mice. We also show that N-Myc expression is induced upon moderate p53-activating stress, suggesting a role of the p53-Wig-1-N-Myc axis in promoting cell cycle re-entry upon p53-induced cell cycle arrest and DNA repair. Moreover, our findings raise possibilities for the improved treatment of poor prognosis neuroblastomas that carry amplified N-Myc

    Combined dynamics of mercury and terrigenous organic matter following impoundment of Churchill Falls Hydroelectric Reservoir, Labrador

    Get PDF
    Sediments from two recently (40 years) flooded lakes (Gabbro lake and Sandgirt lake) and an unflooded lake (Atikonak lake) were sampled to investigate the effects of reservoir impoundment on mercury (Hg) and terrigenous organic matter (TOM) loading in the Churchill Falls Hydroelectric complex in Labrador, Canada. Lignin biomarkers in TOM, which exclusively derive from terrestrial vegetation, were used as biomarkers for the presence and source origin of TOM—and for Hg due to their close associations—in sediments. In the two flooded Gabbro and Sandgirt lakes, we observed drastic increases in total mercury concentrations, T-[Hg], in sediments, which temporally coincided with the time of reservoir impoundment as assessed by 210Pb age dating. In the natural Atikonak lake sediments, on the other hand, T-[Hg] showed no such step-increase but gradually and slowly increased until present. T-[Hg] increases in lake sediments after flooding were also associated with a change in the nature of TOM: biomarker signatures changed to typical signatures of TOM from vegetated terrestrial landscape surrounding the lakes, and indicate a change to TOM that was much less degraded and typical of forest soil organic horizons. We conclude that T-[Hg] increase in the sediments of the two flooded reservoirs was the result of flooding of surrounding forests, whereby mainly surface organic horizons and upper soil horizons were prone to erosion and subsequent re-sedimentation in the reservoirs. The fact that T-[Hg] was still enriched 40 years after reservoir impoundment indicates prolonged response time of lake Hg and sediment loadings after reservoir impoundments

    Hyperspectral Computed Tomographic Imaging Spectroscopy of Vascular Oxygen Gradients in the Rabbit Retina In Vivo

    Get PDF
    Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology

    Genomic Analysis of wig-1 Pathways

    Get PDF
    Background: Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results: Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes

    Insights into deposition of Lower Cretaceous black shales from meager accumulation of organic matter in Albian sediments from ODP site 763, Exmouth Plateau, Northwest Australia

    Full text link
    The amount and type of organic matter present in an exceptionally complete upper Aptian to lower Cenomanian sequence of sediments from ODP site 763 on the Exmouth Plateau has been determined. Organic carbon concentrations average 0.2%. Organic matter is marine in origin, and its production and preservation was low over the ca. 20-million-year interval recorded by this sequence. Because this section was tectonically isolated from mainland Australia in the early Aptian, it better represents global oceanic conditions than the many basin-edge locations in which Albian-age black shales have been found. Formation of the basin-edge black shales evidently resulted from rapid, turbiditic burial of organic matter rather than from enhanced oceanic production or from basin-wide anoxia during the Albian.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47134/1/367_2005_Article_BF02202605.pd

    High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection

    Get PDF
    BACKGROUND: Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune responses mediate both pathology and immunity but the effector responses involved in these processes have not been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their association with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and secretion of IL-12p70, IFN-gamma, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1beta, TNF, TNF-beta was quantified in culture supernatants by multiplex flow cytometry while cellular mRNA expression of IFN-gamma, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by quantitative PCR. RESULTS: Higher concentrations of IL-6 and IL-1beta were associated with a reduced risk of P. falciparum infection in pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1beta and TNF strongly correlated among themselves (rho > 0.5, p < 0.001). Higher production of IL-1beta was significantly associated with congenital malaria (p < 0.046) and excessive TNF was associated with peripheral infection and placental lesions (p < 0.044). CONCLUSIONS: Complex network of immuno-pathological cytokine mechanisms in the placental and utero environments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to infection
    corecore