118 research outputs found

    Induction of Noxa-Mediated Apoptosis by Modified Vaccinia Virus Ankara Depends on Viral Recognition by Cytosolic Helicases, Leading to IRF-3/IFN-β-Dependent Induction of Pro-Apoptotic Noxa

    Get PDF
    Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΔF1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΔF1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΔF1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling

    Overexpression of ZEB2 in Peritumoral Liver Tissue Correlates with Favorable Survival after Curative Resection of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: ZEB2 has been suggested to mediate EMT and disease aggressiveness in several types of human cancers. However, the expression patterns of ZEB2 in hepatocellular carcinoma (HCC) and its effect on prognosis of HCC patients treated with hepatectomy are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the methods of tissue microarray and immunohistochemistry (IHC) were utilized to investigate ZEB2 expression in HCC and peritumoral liver tissue (PLT). Receiver operating characteristic (ROC), spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Up-regulated expression of cytoplasmic/nuclear ZEB2 protein was observed in the majority of PLTs, when compared to HCCs. Further analysis showed that overexpression of cytoplasmic ZEB2 in HCCs was inversely correlated with AFP level, tumor size and differentiation (P<0.05). Also, overexpression of cytoplasmic ZEB2 in PLTs correlated with lower AFP level (P<0.05). In univariate survival analysis, a significant association between overexpression of cytoplasmic ZEB2 by HCCs/PLTs and longer patients' survival was found (P<0.05). Importantly, cytoplasmic ZEB2 expression in PLTs was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Consequently, a new clinicopathologic prognostic model with cytoplasmic ZEB2 expression (including HCCs and PLTs) was constructed. The model could significantly stratify risk (low, intermediate and high) for overall survival (P = 0.002). CONCLUSIONS/SIGNIFICANCE: Our findings provide a basis for the concept that cytoplasmic ZEB2 expressed by PLTs can predict the postoperative survival of patients with HCC. The combined cytoplasmic ZEB2 prognostic model may become a useful tool for identifying patients with different clinical outcomes

    Broad-Spectrum Antiviral Therapeutics

    Get PDF
    Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.National Institute of Allergy and Infectious Diseases (U.S.) (grant AI057159)New England Regional Center of Excellence for Biodefense and Emerging Infectious DiseasesUnited States. Dept. of Defense (Director of Defense Research & Engineering)United States. Defense Threat Reduction AgencyUnited States. Defense Advanced Research Projects Agenc

    Effectiveness of a clinical practice guideline implementation strategy for patients with anxiety disorders in primary care: cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anxiety is a common mental health problem seen in primary care. However, its management in clinical practice varies greatly. Clinical practice guidelines (CPGs) have the potential to reduce variations and improve the care received by patients by promoting interventions of proven benefit. However, uptake and adherence to their recommendations can be low.</p> <p>Method/design</p> <p>This study involves a community based on cluster randomized trial in primary healthcare centres in the Madrid Region (Spain). The project aims to determine whether the use of implementation strategy (including training session, information, opinion leader, reminders, audit, and feed-back) of CPG for patients with anxiety disorders in primary care is more effective than usual diffusion.</p> <p>The number of patients required is 296 (148 in each arm), all older than 18 years and diagnosed with generalized anxiety disorder, panic disorder, and panic attacks by the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). They are chosen by consecutive sampling.</p> <p>The main outcome variable is the change in two or more points into Goldberg anxiety scale at six and twelve months. Secondary outcome variables include quality of life (EuroQol 5D), and degree of compliance with the CPG recommendations on treatment, information, and referrals to mental health services. Main effectiveness will be analyzed by comparing the patients percentage improvement on the Goldberg scale between the intervention group and the control group. Logistic regression with random effects will be used to adjust for prognostic factors. Confounding factors or factors that might alter the effect recorded will be taken into account in this analysis.</p> <p>Discussion</p> <p>There is a need to identify effective implementation strategies for CPG for the management of anxiety disorders present in primary care. Ensuring the appropriate uptake of guideline recommendations can reduce clinical variation and improve the care patients receive.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN83365316">ISRCTN83365316</a></p

    Human African Trypanosomiasis in South Sudan: How Can We Prevent a New Epidemic?

    Get PDF
    Human African trypanosomiasis (HAT) has been a major public health problem in South Sudan for the last century. Recurrent outbreaks with a repetitive pattern of responding-scaling down activities have been observed. Control measures for outbreak response were reduced when the prevalence decreased and/or socio-political crisis erupted, leading to a new increase in the number of cases. This paper aims to raise international awareness of the threat of another outbreak of sleeping sickness in South Sudan. It is a review of the available data, interventions over time, and current reports on the status of HAT in South Sudan. Since 2006, control interventions and treatments providing services for sleeping sickness have been reduced. Access to HAT diagnosis and treatment has been considerably diminished. The current status of control activities for HAT in South Sudan could lead to a new outbreak of the disease unless 1) the remaining competent personnel are used to train younger staff to resume surveillance and treatment in the centers where HAT activities have stopped, and 2) control of HAT continues to be given priority even when the number of cases has been substantially reduced. Failure to implement an effective and sustainable system for HAT control and surveillance will increase the risk of a new epidemic. That would cause considerable suffering for the affected population and would be an impediment to the socioeconomic development of South Sudan

    A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice

    Get PDF
    Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance

    Searching ChIP-seq genomic islands for combinatorial regulatory codes in mouse embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate deciphering underlying transcriptional regulatory circuits in mouse embryonic stem (ES) cells, recent ChIP-seq data provided genome-wide binding locations of several key transcription factors (TFs); meanwhile, existing efforts profiled gene expression in ES cells and in their early differentiated state. It has been shown that the gene expression profiles are correlated with the binding of these TFs. However, it remains unclear whether other TFs, referred to as cofactors, participate the gene regulation by collaborating with the ChIP-seq TFs.</p> <p>Results</p> <p>Based on our analyses of the ES gene expression profiles and binding sites of potential cofactors in vicinity of the ChIP-seq TF binding locations, we identified a list of co-binding features that show significantly different characteristics between different gene expression patterns (activated or repressed gene expression in ES cells) at a false discovery rate of 10%. Gene classification with a subset of the identified features achieved up to 20% improvement over classification only based on the ChIP-seq TFs. More than 1/3 of reasoned regulatory roles of cofactor candidates involved in these features are supported by existing literatures. Finally, the predicted target genes of the majority candidates present expected expression change in another independent data set, which serves as a supplementary validation of these candidates.</p> <p>Conclusions</p> <p>Our results revealed a list of combinatorial genomic features that are significantly associated with gene expression in ES cells, suggesting potential cofactors of the ChIP-seq TFs for gene regulation.</p

    Human Herpesvirus 8 Interferon Regulatory Factor-Mediated BH3-Only Protein Inhibition via Bid BH3-B Mimicry

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of host cells. For HHV-8, viral interferon regulatory factor-1 (vIRF-1) contributes to this process in part via inhibitory interactions with BH3-only protein (BOP) Bim, recently identified as an interaction partner of vIRF-1. Here we recognize that the Bim-binding domain (BBD) of vIRF-1 resembles a region (BH3-B) of Bid, another BOP, which interacts intramolecularly with the functional BH3 domain of Bid to inhibit it pro-apoptotic activity. Indeed, vIRF-1 was found to target Bid in addition to Bim and to interact, via its BBD region, with the BH3 domain of each. In functional assays, BBD could substitute for BH3-B in the context of Bid, to suppress Bid-induced apoptosis in a BH3-binding-dependent manner, and vIRF-1 was able to protect transfected cells from apoptosis induced by Bid. While vIRF-1 can mediate nuclear sequestration of Bim, this was not the case for Bid, and inhibition of Bid and Bim by vIRF-1 could occur independently of nuclear localization of the viral protein. Consistent with this finding, direct BBD-dependent inactivation by vIRF-1 of Bid-induced mitochondrial permeabilization was demonstrable in vitro and isolated BBD sequences were also active in this assay. In addition to Bim and Bid BH3 domains, BH3s of BOPs Bik, Bmf, Hrk, and Noxa also were found to bind BBD, while those of both pro- and anti-apoptotic multi-BH domain Bcl-2 proteins were not. Finally, the significance of Bid to virus replication was demonstrated via Bid-depletion in HHV-8 infected cells, which enhanced virus production. Together, our data demonstrate and characterize BH3 targeting and associated inhibition of BOP pro-apoptotic activity by vIRF-1 via Bid BH3-B mimicry, identifying a novel mechanism of viral evasion from host cell defenses

    Multilocus Microsatellite Typing (MLMT) of Strains from Turkey and Cyprus Reveals a Novel Monophyletic L. donovani Sensu Lato Group

    Get PDF
    In eastern Mediterranean, leishmaniasis represents a major public health problem with considerable impact on morbidity and potential to spread. Cutaneous leishmaniasis (CL) caused by L. major or L. tropica accounts for most cases in this region although visceral leishmaniasis (VL) caused by L. infantum is also common. New foci of human CL caused by L. donovani complex strains were recently described in Cyprus and Turkey. Herein we analyzed Turkish strains from human CL foci in Çukurova region (north of Cyprus) and a human VL case in Kuşadasi. These were compared to Cypriot strains that were previously typed by Multilocus Enzyme Electrophoresis (MLEE) as L. donovani MON-37. Nevertheless, they were found genetically distinct from MON-37 strains of other regions and therefore their origin remained enigmatic. A population study was performed by Multilocus Microsatellite Typing (MLMT) and the profile of the Turkish strains was compared to previously analyzed L. donovani complex strains. Our results revealed close genetic relationship between Turkish and Cypriot strains, which form a genetically distinct L. infantum monophyletic group, suggesting that Cypriot strains may originate from Turkey. Our analysis indicates that the epidemiology of leishmaniasis in this region is more complicated than originally thought

    First Molecular Epidemiological Study of Cutaneous Leishmaniasis in Libya

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by protozoan parasites of the genus Leishmania. The disease is characterized by the formation of chronic skin lesions followed by permanent scars and deformation of the infected area. It is distributed in many tropical and subtropical countries with more than 2 million cases every year. During the past few years CL has emerged as a major public health problem in Libya. So far, diagnosis was based on clinical symptoms and microscopic observation of parasites. Disease outbreaks were not investigated and the causative leishmanial species of CL were not identified so far. Our study indicates the presence of two coexisting species: Leishmania major and Leishmania tropica. These results are crucial in order to provide accurate treatment, precise prognosis and appropriate public health control measures. The recent armed conflict in Libya that ended with the Gadhafi regime collapse on October 2011 has affected all aspects of the life in the country. In this study we discussed multiple risk factors that could be associated with this conflict and present major challenges that should be considered by local and national health authorities for evaluating the CL burden and highlighting priority actions for disease control
    corecore