33 research outputs found
Extreme genetic fragility of the HIV-1 capsid
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach
Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100–150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence
Effects of thymic selection of the T cell repertoire on HLA-class I associated control of HIV infection
Without therapy, most people infected with human immunodeficiency virus (HIV) ultimately progress to AIDS. Rare individuals (‘elite controllers’) maintain very low levels of HIV RNA without therapy, thereby making disease progression and transmission unlikely. Certain HLA class I alleles are markedly enriched in elite controllers, with the highest association observed for HLA-B57 (ref. 1). Because HLA molecules present viral peptides that activate CD8+ T cells, an immune-mediated mechanism is probably responsible for superior control of HIV. Here we describe how the peptide-binding characteristics of HLA-B57 molecules affect thymic development such that, compared to other HLA-restricted T cells, a larger fraction of the naive repertoire of B57-restricted clones recognizes a viral epitope, and these T cells are more cross-reactive to mutants of targeted epitopes. Our calculations predict that such a T-cell repertoire imposes strong immune pressure on immunodominant HIV epitopes and emergent mutants, thereby promoting efficient control of the virus. Supporting these predictions, in a large cohort of HLA-typed individuals, our experiments show that the relative ability of HLA-B alleles to control HIV correlates with their peptide-binding characteristics that affect thymic development. Our results provide a conceptual framework that unifies diverse empirical observations, and have implications for vaccination strategies.Mark and Lisa Schwartz FoundationNational Institutes of Health (U.S.) (Director’s Pioneer award)Philip T. and Susan M. Ragon FoundationJane Coffin Childs Memorial Fund for Medical ResearchBill & Melinda Gates FoundationNational Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (contract no. HHSN261200800001E)National Institutes of Health (U.S.). Intramural Research ProgramNational Cancer Institute (U.S.)Center for Cancer Research (National Cancer Institute (U.S.)
Reproductive biology of the pampas deer (Ozotoceros bezoarticus): a review
The pampas deer (Ozotoceros bezoarticus) is a South American grazing deer which is in extreme danger of extinction. Very little is known about the biology of the pampas deer. Moreover, most information has not been published in peer-reviewed scientific journals, and is only available in local publications, theses, etc. Therefore, our aim was to update and summarize the available information regarding the reproductive biology of the pampas deer. Moreover, in most sections, we have also included new, unpublished information. Detailed descriptions are provided of the anatomy of both the female and the male reproductive tract, puberty onset, the oestrous cycle and gestational length. Birthing and the early postpartum period are described, as are maternal behaviour and early fawn development, seasonal distribution of births, seasonal changes in male reproduction and antler cycle, reproductive behaviour, semen collection, and cryopreservation. Finally, an overview is given and future directions of research are proposed
HIV-1 Residual Viremia Correlates with Persistent T-Cell Activation in Poor Immunological Responders to Combination Antiretroviral Therapy
BACKGROUND:The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14(high) CD16(-) and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences. We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14(high) CD16(-) monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution. CONCLUSIONS:Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART
Genetic Ancestry, Race, and Severity of Acutely Decompensated Cirrhosis in Latin America
Background & Aims: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. /
Methods: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. /
Results: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03–1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84–3.58) for Native American race vs European American race. /
Conclusions: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment
Pervasive Sign Epistasis between Conjugative Plasmids and Drug-Resistance Chromosomal Mutations
Multidrug-resistant bacteria arise mostly by the accumulation of plasmids and chromosomal mutations. Typically, these resistant determinants are costly to the bacterial cell. Yet, recently, it has been found that, in Escherichia coli bacterial cells, a mutation conferring resistance to an antibiotic can be advantageous to the bacterial cell if another antibiotic-resistance mutation is already present, a phenomenon called sign epistasis. Here we study the interaction between antibiotic-resistance chromosomal mutations and conjugative (i.e., self-transmissible) plasmids and find many cases of sign epistasis (40%)—including one of reciprocal sign epistasis where the strain carrying both resistance determinants is fitter than the two strains carrying only one of the determinants. This implies that the acquisition of an additional resistance plasmid or of a resistance mutation often increases the fitness of a bacterial strain already resistant to antibiotics. We further show that there is an overall antagonistic interaction between mutations and plasmids (52%). These results further complicate expectations of resistance reversal by interdiction of antibiotic use