52 research outputs found

    Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants

    Get PDF
    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival

    Competition–colonization trade-offs in a ciliate model community

    Get PDF
    There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors

    Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus

    Get PDF
    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects

    An Indirect Cue of Predation Risk Counteracts Female Preference for Conspecifics in a Naturally Hybridizing Fish Xiphophorus birchmanni

    Get PDF
    Mate choice is context dependent, but the importance of current context to interspecific mating and hybridization is largely unexplored. An important influence on mate choice is predation risk. We investigated how variation in an indirect cue of predation risk, distance to shelter, influences mate choice in the swordtail Xiphophorus birchmanni, a species which sometimes hybridizes with X. malinche in the wild. We conducted mate choice experiments to determine whether females attend to the distance to shelter and whether this cue of predation risk can counteract female preference for conspecifics. Females were sensitive to shelter distance independent of male presence. When conspecific and heterospecific X. malinche males were in equally risky habitats (i.e., equally distant from shelter), females associated primarily with conspecifics, suggesting an innate preference for conspecifics. However, when heterospecific males were in less risky habitat (i.e., closer to shelter) than conspecific males, females no longer exhibited a preference, suggesting that females calibrate their mate choices in response to predation risk. Our findings illustrate the potential for hybridization to arise, not necessarily through reproductive “mistakes”, but as one of many potential outcomes of a context-dependent mate choice strategy

    Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes

    Get PDF
    The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies

    Dispersal and microsite limitation of a rare alpine plant

    Get PDF
    Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differences in habitat suitability for adult C. thyrsoides, which was measured by the Beals index. At each site we applied a disturbance treatment, added seeds at different densi- ties and monitored the survival of seedlings over two consecutive years. The number of surviving seedlings was not positively related to habitat suitability for adult C. thyrsoides. Furthermore, C. thyrsoides appears to be strongly dispersal limited at the regional scale because seed addition to unoccupied habitats resulted in successful germination and survival of seedlings. Since an increase of seed density in already occupied sites did not affect the number of seedlings, we suggest that C. thyrsoides is microsite limited at the local scale. Microsite limitation is supported by the result that seedling survival of the species was enhanced in vegetation gaps created by disturbance. We conclude E. S. Frei (&) J. F. Scheepens, J. Sto ̈cklin Section of Plant Ecology, Institute of Botany, University of Basel, Scho ̈nbeinstrasse 6, 4056 Basel, Switzerland e-mail: [email protected] that C. thyrsoides may become endangered in the future if environmental changes cause local extinction of populations. An appropriate management, such as a disturbance regime for enhancing recruitment in existing populations, may ensure the long-term sur- vival of this rare alpine plant species
    corecore