301 research outputs found

    Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe

    Get PDF
    The purpose of this study was to examine the influence of climate on the distribution and present-day genetic structure of the common vole (Microtus arvalis) and the field vole (Microtus agrestis). In this study, we used previously published data on the genetic structure (using microsatellite DNA) of the common and field vole in Central Europe and a set of climatic variables to conduct binomial generalized linear and environmental niche modeling. In terms of present-day genetic structure, climate is an important factor shaping the patterns of distribution of the identified genetic groups, with the average minimum temperature in January being a significant factor for both species. For the field vole, average annual precipitation was an important factor also and consistent with the species’ preference for wet habitats. Therefore, this study has provided indirect evidence that (1) climate can shape the genetic structure and distribution of species at both broad and local scales and (2) using genetic data and species distribution modeling can be an effective approach to establish locations of putative glacial refugia for different species in Europe and to explore their past evolutionary history

    Phylogeographical structure of the pygmy shrew : revisiting the roles of southern and northern refugia in Europe

    Get PDF
    Southern and northern glacial refugia are considered paradigms that explain the complex phylogeographical patterns and processes of European biota. Here, we provide a revisited statistical phylogeographical analysis of the pygmy shrew Sorex minutus Linnaeus, 1766 (Eulipotyphla, Soricidae), examining its genetic diversity, genetic differentiation and demographic history in the Mediterranean peninsulas and in Western and Central Europe. The results showed support for genetically distinct and diverse phylogeographical groups consistent with southern and northern glacial refugia, as expected from previous studies. We also identified geographical barriers concordant with glaciated mountain ranges during the Last Glacial Maximum (LGM), early diversification events dated between the Late Pleistocene and Early Holocene for the main phylogeographical groups, and recent (post-LGM) patterns of demographic expansions. This study is the most comprehensive investigation of this species to date, and the results have implications for the conservation of intraspecific diversity and the preservation of the evolutionary potential of S. minutus

    Shark-dust: Application of high-throughput DNA sequencing of processing residues for trade monitoring of threatened sharks and rays

    Get PDF
    Illegal fishing, unregulated bycatch, and market demand for certain products (e.g., fins) are largely responsible for the rapid global decline of shark and ray populations. Controlling trade of endangered species remains difficult due to product variety, taxonomic ambiguity, and trade complexity. The genetic tools traditionally used to identify traded species typically target individual tissue samples, and are time-consuming and/or species-specific. Here, we performed high-throughput sequencing of trace DNA fragments retrieved from dust and scraps left behind by trade activities. We metabarcoded “shark-dust” samples from seven processing plants in the world's biggest shark landing site (Java, Indonesia), and identified 61 shark and ray taxa (representing half of all chondrichthyan orders), more than half of which could not be recovered from tissue samples collected in parallel from the same sites. Importantly, over 80% of shark-dust sequences were found to belong to CITES-listed species. We argue that this approach is likely to become a powerful and cost-effective monitoring tool wherever wildlife is traded

    Shark-dust: high-throughput DNA sequencing of processing residues unveils widespread trade in threatened sharks and rays

    Get PDF
    Illegal fishing, unregulated bycatch, and market demand for certain products (e.g. fins) are largely responsible for the rapid global decline of shark and ray populations. Controlling trade of endangered species remains difficult due to product variety, taxonomic ambiguity and trade complexity. The genetic tools traditionally used to identify traded species typically target individual tissue samples, are time-consuming and/or species-specific. Here, we performed high-throughput sequencing of trace DNA fragments retrieved from dust and scraps left behind by trade activities. We metabarcoded ‘shark-dust’ samples from seven processing plants in the world’s biggest shark landing site (Java, Indonesia), and identified 54 shark and ray taxa (representing half of all chondrichthyan orders), half of which could not be recovered from tissue samples collected in parallel from the same sites. Importantly, over 80% of shark-dust sequences were found to belong to CITES-listed species. We argue that this approach is likely to become a powerful and cost-effective monitoring tool wherever wildlife is traded

    Shark and ray trade in and out of Indonesia: Addressing knowledge gaps on the path to sustainability

    Get PDF
    Indonesian marine resources are among the richest on the planet, sustaining highly diverse fisheries. These fisheries include the largest shark and ray landings in the world, making Indonesia one of the world’s largest exporters of elasmobranch products. Socio-economic and food security considerations pertaining to Indonesian communities add further layers of complexity to the management and conservation of these vulnerable species. This study investigates the elasmobranch trade flows in and out of Indonesia and attempts to examine patterns and drivers of the current scenario. We identify substantial discrepancies between reported landings and declared exports, and between Indonesian exports in elasmobranch fin and meat products and the corresponding figures reported by importing countries. These mismatches are estimated to amount to over 43.6Mand43.6 M and 20.9 M for fins and meat, respectively, for the period between 2012 and 2018. Although the declared exports are likely to be an underestimation because of significant unreported or illegal trading activities, we note that domestic consumption of shark and ray products may also explain these discrepancies. The study also unearths a general scenario of unsystematic data collection and lack of granularity of product terminology, which is inadequate to meet the challenges of over-exploitation, illegal trade and food security in Indonesia. We discuss how to improve data transparency to support trade regulations and governance actions, by improving inspection measures, and conserving elasmobranch populations without neglecting the socio-economic dimension of this complex system

    eDNA in a bottleneck : obstacles to fish metabarcoding studies in megadiverse freshwater systems

    Get PDF
    The current capacity of environmental DNA (eDNA) to provide accurate insights into the biodiversity of megadiverse regions (e.g., the Neotropics) requires further evaluation to ensure its reliability for long‐term monitoring. In this study, we first evaluated the taxonomic resolution capabilities of a short fragment from the 12S rRNA gene widely used in fish eDNA metabarcoding studies, and then compared eDNA metabarcoding data from water samples with traditional sampling using nets. For the taxonomic discriminatory power analysis, we used a specifically curated reference dataset consisting of 373 sequences from 258 neotropical fish species (including 47 newly generated sequences) to perform a genetic distance‐based analysis of the amplicons targeted by the MiFish primer set. We obtained an optimum delimitation threshold value of 0.5% due to lowest cumulative errors. The barcoding gap analysis revealed only a 51.55% success rate in species recovery (133/258), highlighting a poor taxonomic resolution from the targeted amplicon. To evaluate the empirical performance of this amplicon for biomonitoring, we assessed fish biodiversity using eDNA metabarcoding from water samples collected from the Amazon (Adolpho Ducke Forest Reserve and two additional locations outside the Reserve). From a total of 84 identified Molecular Operational Taxonomic Units (MOTUs), only four could be assigned to species level using a fixed threshold. Measures of α‐diversity analyses within the Reserve showed similar patterns in each site between the number of MOTUs (eDNA dataset) and species (netting data) found. However, β‐diversity revealed contrasting patterns between the methods. We therefore suggest that a new approach is needed, underpinned by sound taxonomic knowledge, and a more thorough evaluation of better molecular identification procedures such as multi‐marker metabarcoding approaches and tailor‐made (i.e., order‐specific) taxonomic delimitation thresholds

    Seasonal development of a tidal mixing front drives shifts in community structure and diversity of bacterioplankton

    Get PDF
    Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S-rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra-annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well-mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems

    PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice

    Get PDF
    The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2)-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86)Y-CNT and (111)In-CNT, respectively) in a mouse model.The (86)Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111)In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET). The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86)Y-CNT were the kidney, liver, spleen, and to a much less extent the bone. Blood clearance was rapid and could be beneficial in the use of short-lived radionuclides in diagnostic applications

    Resource competition drives an invasion‐replacement event among shrew species on an island

    Get PDF
    Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white‐toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural ‘control’ site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services
    corecore