69 research outputs found

    Quantifying the Multivariate ENSO Index (MEI) coupling to CO2 concentration and to the length of day variations

    Full text link
    The El Ni\~no Southern Oscillation (ENSO) is the Earth's strongest climate fluctuation on inter-annual time-scales and has global impacts although originating in the tropical Pacific. Many point indices have been developed to describe ENSO but the Multivariate ENSO Index (MEI) is considered the most representative since it links six different meteorological parameters measured over the tropical Pacific. Extreme values of MEI are correlated to the extreme values of atmospheric CO2 concentration rate variations and negatively correlated to equivalent scale extreme values of the length of day (LOD) rate variation. We evaluate a first order conversion function between MEI and the other two indexes using their annual rate of variation. The quantification of the strength of the coupling herein evaluated provides a quantitative measure to test the accuracy of theoretical model predictions. Our results further confirm the idea that the major local and global Earth-atmosphere system mechanisms are significantly coupled and synchronized to each other at multiple scales.Comment: Theoretical Applied Climatology (2012

    Molecular gas in nearby powerful radio galaxies

    Get PDF
    We report the detection of CO(1-0) and CO(2-1) emission from the central region of nearby 3CR radio galaxies (z<< 0.03). Out of 21 galaxies, 8 have been detected in, at least, one of the two CO transitions. The total molecular gas content is below 109^9 \msun. Their individual CO emission exhibit, for 5 cases, a double-horned line profile that is characteristic of an inclined rotating disk with a central depression at the rising part of its rotation curve. The inferred disk or ring distributions of the molecular gas is consistent with the observed presence of dust disks or rings detected optically in the cores of the galaxies. We reason that if their gas originates from the mergers of two gas-rich disk galaxies, as has been invoked to explain the molecular gas in other radio galaxies, then these galaxies must have merged a long time ago (few Gyr or more) but their remnant elliptical galaxies only recently (last 107^7 years or less) become active radio galaxies. Instead, we argue the the cannibalism of gas-rich galaxies provide a simpler explanation for the origin of molecular gas in the elliptical hosts of radio galaxies (Lim et al. 2000). Given the transient nature of their observed disturbances, these galaxies probably become active in radio soon after the accretion event when sufficient molecular gas agglomerates in their nuclei.Comment: 6 pages, including 2 figures,in "QSO Hosts and Their Environments", ed. I. Marquez, in pres

    Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity

    Get PDF
    Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3) to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations

    A catalog of Kazarian galaxies

    Full text link
    The entire Kazarian galaxies (KG) catalog is presented which combines extensive new measurements of their optical parameters with a literature and database search. The measurements were made using images extracted from the STScI Digitized Sky Survey (DSS) of Jpg(blue), Fpg(red) and Ipg(NIR) band photographic sky survey plates obtained by the Palomar and UK Schmidt telescopes. We provide accurate coordinates, morphological type, spectral and activity classes, blue apparent diameters, axial ratios, position angles, red, blue and NIR apparent magnitudes, as well as counts of neighboring objects in a circle of radius 50 kpc from centers of KG. Special attention was paid to the individual descriptions of the galaxies in the original Kazarian lists, which clarified many cases of misidentifications of the objects, particularly among interacting systems. The total number of individual Kazarian objects in the database is now 706. We also include the redshifts which are now available for 404 galaxies and the 2MASS infrared magnitudes for 598 KG. The database also includes extensive notes, which summarize information about the membership of KG in different systems of galaxies, and about revised activity classes and redshifts. An atlas of several interesting subclasses of KG is also presented.Comment: 15 pages, 5 figures, 1 table, Accepted in Astrophysics, Vol. 53, No. 1, 2010 (English translation of Astrofizika

    An eclipsing binary distance to the Large Magellanic Cloud accurate to 2 per cent

    Full text link
    In the era of precision cosmology it is essential to determine the Hubble Constant with an accuracy of 3% or better. Currently, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC) which as the second nearest galaxy serves as the best anchor point of the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to precisely and accurately measure stellar parameters and distances. The eclipsing binary method was previously applied to the LMC but the accuracy of the distance results was hampered by the need to model the bright, early-type systems used in these studies. Here, we present distance determinations to eight long-period, late- type eclipsing systems in the LMC composed of cool giant stars. For such systems we can accurately measure both the linear and angular sizes of their components and avoid the most important problems related to the hot early-type systems. Our LMC distance derived from these systems is demonstrably accurate to 2.2 % (49.97 +/- 0.19 (statistical) +/- 1.11 (systematic) kpc) providing a firm base for a 3 % determination of the Hubble Constant, with prospects for improvement to 2 % in the future.Comment: 34 pages, 5 figures, 13 tables, published in the Nature, a part of our data comes from new unpublished OGLE-IV photometric dat

    Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celiac disease (CD) is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS) cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders.</p> <p>Methods</p> <p>CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity.</p> <p>Results</p> <p>Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (<it>P </it>= 0.0308), paralleled by significantly increased expression of claudin (CLDN) 4 (<it>P </it>= 0.0286). Relative to controls, adaptive immunity markers interleukin (IL)-6 (<it>P </it>= 0.0124) and IL-21 (<it>P </it>= 0.0572) were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR) 2 was increased in GS but not in CD (<it>P </it>= 0.0295). Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (<it>P </it>= 0.0325) and CD patients (<it>P </it>= 0.0293).</p> <p>Conclusions</p> <p>This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.</p

    Adverse Effect of Nano-Silicon Dioxide on Lung Function of Rats with or without Ovalbumin Immunization

    Get PDF
    BACKGROUND: The great advances of nanomaterials have brought out broad important applications, but their possible nanotoxicity and risks have not been fully understood. It is confirmed that exposure of environmental particulate matter (PM), especially ultrafine PM, are responsible for many lung function impairment and exacerbation of pre-existing lung diseases. However, the adverse effect of nanoparticles on allergic asthma is seldom investigated and the mechanism remains undefined. For the first time, this work investigates the relationship between allergic asthma and nanosized silicon dioxide (nano-SiO₂). METHODOLOGY/PRINCIPAL FINDINGS: Ovalbumin (OVA)-treated and saline-treated control rats were daily intratracheally administered 0.1 ml of 0, 40 and 80 µg/ml nano-SiO₂ solutions, respectively for 30 days. Increased nano-SiO₂ exposure results in adverse changes on inspiratory and expiratory resistance (Ri and Re), but shows insignificant effect on rat lung dynamic compliance (Cldyn). Lung histological observation reveals obvious airway remodeling in 80 µg/ml nano-SiO₂-introduced saline and OVA groups, but the latter is worse. Additionally, increased nano-SiO₂ exposure also leads to more severe inflammation. With increasing nano-SiO₂ exposure, IL-4 in lung homogenate increases and IFN-γ shows a reverse but insignificant change. Moreover, at a same nano-SiO₂ exposure concentration, OVA-treated rats exhibit higher (significant) IL-4 and lower (not significant) IFN-γ compared with the saline-treated rats. The percentages of eosinophil display an unexpected result, in which higher exposure results lower eosinophil percentages. CONCLUSIONS/SIGNIFICANCE: This was a preliminary study which for the first time involved the effect of nano-SiO₂ to OVA induced rat asthma model. The results suggested that intratracheal administration of nano-SiO₂ could lead to the airway hyperresponsiveness (AHR) and the airway remolding with or without OVA immunization. This occurrence may be due to the Th1/Th2 cytokine imbalance accelerated by the nano-SiO₂ through increasing the tissue IL-4 production

    Loss of Guanylyl Cyclase C (GCC) Signaling Leads to Dysfunctional Intestinal Barrier

    Get PDF
    Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC-/-) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN-/-) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury

    Protein disulphide isomerase-assisted functionalization of proteinaceous substrates

    Get PDF
    Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
    corecore