22 research outputs found

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Enhanced luminescence properties of highly threaded conjugated polyelectrolytes with potassium counter-ions upon blending with poly(ethylene oxide)

    No full text
    The photophysics and electroluminescence (EL) of thin films of unthreaded and cyclodextrin-encapsulated poly(4, 4′ -diphenylenevinylene) (PDV) with potassium countercations, blended with poly(ethylene oxide) (PEO) are investigated as a function of the PEO concentration. We show that three main factors contribute to increasing the photoluminescence (PL) quantum efficiency as a result of suppressed intermolecular interactions, namely: the high degree of encapsulation of the polyrotaxanes, the relatively large countercation (e.g., compared to lithium), and the complexation of the rotaxanes with PEO. By facilitating cationic transport to the negative electrodes, PEO also leads to devices with enhanced electron injection and improved charge balance, whose operation therefore resembles that of "virtually unipolar" light-emitting electrochemical cells. This effect, together with the enhanced PL efficiency, leads to higher EL efficiency for both polyrotaxanes and unthreaded polymers, upon addition of the PEO. We show that the concurrent exploitation of the various strategies above lead to an overall EL efficiency that is approximately twice the value previously reported for Li-based PDV. A blueshift of the EL spectrum during the devices turn-on is also reported and analyzed in terms of interference and doping effects. © 2010 American Institute of Physics

    Enhanced luminescence properties of highly threaded conjugated polyelectrolytes with potassium counter-ions upon blending with poly(ethylene oxide)

    Get PDF
    The photophysics and electroluminescence (EL) of thin films of unthreaded and cyclodextrin-encapsulated poly(4,4’-diphenylenevinylene) (PDV) with potassium countercations, blended with poly(ethylene oxide) (PEO) are investigated as a function of the PEO concentration. We show that three main factors contribute to increasing the photoluminescence (PL) quantum efficiency as a result of suppressed intermolecular interactions, namely: the high degree of encapsulation of the polyrotaxanes, the relatively large countercation (e.g., compared to lithium), and the complexation of the rotaxanes with PEO. By facilitating cationic transport to the negative electrodes, PEO also leads to devices with enhanced electron injection and improved charge balance, whose operation therefore resembles that of “virtually unipolar” light-emitting electrochemical cells. This effect, together with the enhanced PL efficiency, leads to higher EL efficiency for both polyrotaxanes and unthreaded polymers, upon addition of the PEO. We show that the concurrent exploitation of the various strategies above lead to an overall EL efficiency that is approximately twice the value previously reported for Li-based PDV. A blueshift of the EL spectrum during the devices turn-on is also reported and analyzed in terms of interference and doping effects. 2010 American Institute of Physics. [doi:10.1063/1.3372616

    A quaterthiophene-based rotaxane: synthesis, spectroscopy, and self-assembly at surfaces.

    No full text
    Threaded molecular wires are shown to feature tunable properties. A new rotaxane based on a quaterthiophene threaded through a single β-cyclodextrin exhibits delocalization of the aromatic system that is also extended onto the central phenyl rings of the m-terphenylene end-groups. The rotaxane can undergo self-assembly that is better than the analogous bithiophene derivative, due to the increased π-π interactions

    Self-Assembled Conjugated Thiophene-Based Rotaxane Architectures: Structural, Computational, and Spectroscopic Insights into Molecular Aggregation

    No full text
    A comparative study of the self-assembly at a variety of surfaces of a dithiophene rotaxane 1⊂β-CD and its corresponding dumbbell, 1, by means of atomic force microscopy (AFM) imaging and scanning tunneling microscopy (STM) imaging on the micrometer and nanometer scale, respectively. The dumbbell is found to have a greater propensity to form ordered supramolecular assemblies, as a result of π-π interactions between dithiophenes belonging to adjacent molecules, which are hindered in the rotaxane. The fine molecular structure determined by STM was compared to that obtained by molecular modelling. The optical properties of both rotaxane and dumbbell in the solid state were investigated by steady-state and time-resolved photoluminescence (PL) experiments on spin-cast films and diluted solutions. The comparison between the optical features of the threaded and unthreaded systems reveals an effective role of encapsulation in reducing aggregation and exciton migration for the rotaxanes with respect to the dumbbells, thus leading to higher PL quantum efficiency and preserved single-molecule photophysics for longer times after excitation in the threaded oligomers. © 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim
    corecore