
Short Proofs for the Determinant Identities

Pavel Hrubeš
Department of Computer Science

University of Calgary
Alberta, Canada

pahrubes@gmail.com

Iddo Tzameret
∗

Institute for Theoretical Computer Science at IIIS
Tsinghua University

Beijing 100084, China
tzameret@tsinghua.edu.cn

ABSTRACT
We study arithmetic proof systems Pc(F) and Pf (F) operat-
ing with arithmetic circuits and arithmetic formulas, respec-
tively, that prove polynomial identities over a field F. We
establish a series of structural theorems about these proof
systems, the main one stating that Pc(F) proofs can be bal-
anced: if a polynomial identity of syntactic degree d and
depth k has a Pc(F) proof of size s, then it also has a Pc(F)
proof of size poly(s, d) and depth O(k+log2 d+log d · log s).
As a corollary, we obtain a quasipolynomial simulation of
Pc(F) by Pf (F), for identities of a polynomial syntactic de-
gree.

Using these results we obtain the following: consider the
identities

det(XY) = det(X) · det(Y) and det(Z) = z11 · · · znn,

where X,Y and Z are n × n square matrices and Z is a
triangular matrix with z11, . . . , znn on the diagonal (and det
is the determinant polynomial). Then we can construct a
polynomial-size arithmetic circuit det such that the above
identities have Pc(F) proofs of polynomial-size and O(log2 n)
depth. Moreover, there exists an arithmetic formula det of
size nO(log n) such that the above identities have Pf (F) proofs

of size nO(log n).
This yields a solution to a basic open problem in

propositional proof complexity, namely, whether there are
polynomial-size NC2-Frege proofs for the determinant iden-
tities and the hard matrix identities, as considered, e.g. in
Soltys and Cook [14] (cf., Beame and Pitassi [1]). We show
that matrix identities like AB = I → BA = I (for matri-
ces over the two element field) as well as basic properties
of the determinant have polynomial-size NC2-Frege proofs,
and quasipolynomial-size Frege proofs.

∗Supported in part by the National Basic Research Program
of China Grant 2011CBA00300, 2011CBA00301, the Na-
tional Natural Science Foundation of China Grant 61033001,
61061130540, 61073174.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12 May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Complexity
of proof procedures

General Terms
Theory

Keywords
Proof complexity, algebraic complexity, Frege systems, lin-
ear algebra, determinant

1. INTRODUCTION
The field of proof complexity is dominated by the question

of how hard is it to prove propositional tautologies. For weak
proof systems, such as resolution, many hardness results are
known (cf., [10] for a recent technical survey), but for strong
propositional proof systems like Frege or extended Frege the
question remains completely open. In this paper we continue
to investigate a different but related problem: how hard is
it to prove polynomial identities? For this purpose, various
systems for proving polynomial identities were introduced
in [4]. The main feature of these systems is that they ma-
nipulate arithmetic equations of the form F = G, where
F,G are arithmetic formulas over a given field. Such equa-
tions are manipulated by means of simple syntactic rules, in
such a way that F = G has a proof if and only if F and G
compute the same polynomial. The central question in this
framework is the following:

What is the length of such proofs, namely, does
every true polynomial equation have a short
proof, or are there hard equations that require
extremely long proofs?

In this paper, we focus on two arithmetic equational proof
systems (arithmetic proofs systems, for short) for proving
polynomial identities: Pf and Pc. The former system was
introduced in [4] and the latter is an extension of it. The
difference between the two systems is that Pf operates with
arithmetic formulas, whereas Pc operates with arithmetic
circuits—this is analogous to the distinction between Frege
and extended Frege proof systems (Frege and extended Frege
proofs are propositional proof systems establishing proposi-
tional tautologies, essentially operating with boolean formu-
las and circuits, respectively).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28906938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The study of proofs of polynomial identities is motivated
by at least two reasons. First, as a study of the Polyno-
mial Identity Testing (PIT) problem. As a decision prob-
lem, polynomial identity testing can be solved by an efficient
randomized algorithm [9, 19], but no efficient deterministic
algorithm is known. In fact, it is not even known whether
there is a polynomial time non-deterministic algorithm or,
equivalently, whether PIT is in NP. A proof system such
as Pc can be interpreted as a specific non-deterministic algo-
rithm for PIT: in order to verify that an arithmetic formula
F computes the zero polynomial, it is sufficient to guess a
proof of F = 0 in Pc. Hence, if every true equality has a
polynomial-size proof then PIT is in NP. Conversely, Pf

and Pc systems capture the common syntactic procedures
used to establish equality of algebraic expressions. Thus,
showing the existence of identities that require superpoly-
nomial arithmetic proofs would imply that those syntactic
procedures are not enough to solve PIT efficiently.

The second motivation comes from propositional proof
complexity. The systems Pf and Pc are in fact restricted ver-
sions of their propositional counterparts, Frege and extended
Frege, respectively (when operating over GF (2)). One may
hope that the study of the former would help to understand
the latter. Arithmetic proof systems have the advantage
that they work with arithmetic circuits. The structure of
arithmetic circuits is perhaps better understood than the
structure of their Boolean counterparts, or is at least differ-
ent, suggesting different techniques and fresh perspectives.

In order to understand the strength of the systems Pf

and Pc, as well as their relative strength, we investigate
quite a specific question, namely, how hard is it to prove
basic properties of the determinant? In other words, we in-
vestigate lengths of proofs of identities such as det(AB) =
det(A)·det(B), or the cofactor expansion of the determinant.
We show that such identities have polynomial-size Pc proofs
of depth O(log2 n) and quasipolynomial size Pf proofs (both
results hold over any field).1

The determinant polynomial has a central role in both
linear algebra and arithmetic circuit complexity. Therefore,
an immediate motivation for our inquiry is to understand
whether arithmetic proof systems are strong enough to rea-
son efficiently about the determinant. More importantly, we
take the determinant question as a pretext to present several
structural properties of Pc and Pf . A large part of this work
is not concerned with the determinant at all, but is rather
a series of general theorems showing how classical results in
arithmetic circuit complexity can be translated to the set-
ting of arithmetic proofs. We thus show how to capture
efficiently the following results: (i) homogenization of arith-
metic circuits (implicit in [16]); (ii) Strassen’s technique for
eliminating division gates over large enough fields (also in
[16]); (iii) eliminating division gates over small fields—this
is done by simulating large fields in small ones; and (iv) bal-
ancing arithmetic circuits (Valiant et al. [18]; see also [5]).
Most notably, the latter result gives a collapse of polynomial-
size Pc proofs to polynomial-size O(log2 n)-depth Pc proofs
(for proving identities of polynomial syntactic degrees) and
a quasipolynomial simulation of Pc by Pf . This is one im-
portant point where the arithmetic systems differ from Frege

1The parameter n is the dimension of the matrices A,B,
and quasipolynomial size means size nO(log n).

and extended Frege, for which no non-trivial simulation is
known.

Furthermore, the proof complexity of linear algebra at-
tracted a lot of attention in the past. This was motivated,
in part, by the goal of separating the propositional proof
systems Frege and extended Frege. A classical example,
originally proposed by Cook and Rackoff (cf., [1, 14, 15,
12, 13]), is the so called inversion principle asserting that
AB = I → BA = I. When A,B are n × n matrices over
GF (2), the inversion principle is a collection of propositional
tautologies. Soltys and Cook [14, 12] showed that the prin-
ciple has polynomial size extended Frege proofs. On the
other hand, no feasible Frege proof is known, and hence
the inversion principle is a candidate for separating the two
proof systems. Other candidates, including several based on
linear algebra, were presented by Buss et al. [3]. The inver-
sion principle is one of the “hard matrix identities” explored
in [14]. Inside Frege, the hard matrix identities have fea-
sible proofs from one another, and they have short proofs
from the aforementioned determinant identities. This con-
nection between the hard matrix identities and the deter-
minant identities serves as an evidence for the conjecture
that hard matrix identities require superpolynomial Frege
proofs: it seems that every Frege proof must in some sense
construct the determinant, which is believed to require a
superpolynomial-size formula.

A related question is whether the hard matrix identities
and the determinant identities have polynomial-size NC2-
Frege proofs2. This was conjectured in, e.g., [3], based on the
intuition that the determinant is NC2 computable, and so
by the analogy between circuit classes and proofs, it is natu-
ral to assume that the determinant properties are efficiently
provable in NC2-Frege. Again, a polynomial-size extended
Frege proofs of the determinant identities have been con-
structed in [14]. Whether these identities have polynomial-
size NC2-Frege proofs (and hence, quasipolynomial-size
Frege proofs) remained open. In this paper, we positively
answer this question: we show that over GF (2), the hard
hard matrix identities and the determinant identities have
polynomial-size NC2-Frege proofs. This is a simple corol-
lary of the results on arithmetic proof systems. Over the
two element field, an O(log2 n)-depth Pc proof is formally
also NC2-Frege proof3. Thus, if determinant identities like
det(AB) = det(A) · det(B) have polynomial-size Pc(GF (2))
proofs with depth O(log2 n), then the corresponding propo-
sitional tautologies have polynomial-size NC2-Frege proofs.

Let us remark that one can also consider propositional
translations of the determinant identities (and the hard ma-
trix identities) over different finite fields or even the ratio-
nals. We do not explicitly study these translations, but there
is no apparent obstacle to extending the result to these cases.

To understand our construction of short arithmetic proofs
for the determinant identities, let us consider the following
example. In [2], Berkowitz constructed a quasipolynomial
size arithmetic formula for the determinant. He used a clever
combinatorial argument designed specifically for the deter-
minant function. However, one can build such a formula
in a completely oblivious way: first compute the determi-
nant by, say, Gaussian elimination algorithm. This gives an

2That is, polynomial size proofs using circuits of O(log2 n)-
depth
3When + and · modulo 2 are interpreted as Boolean con-
nectives and = is interpreted as logical equivalence.

arithmetic circuit with division gates. Second, show that any
circuit with division gates computing a polynomial can be ef-
ficiently simulated by a division-free circuit [16], and finally,
show that any arithmetic circuit of a polynomial degree can
be transformed to an O(log2 n)-depth circuit computing the
same polynomial, with only a polynomial increase in size [18]
(or to a formula with at most a quasipolynomial increase in
size [5]). This paper follows a similar strategy, but in the
proof-theoretic framework.

It should be stressed that in full generality, the struc-
tural theorems about Pc and Pf cannot be reproduced for
propositional Frege and extended Frege systems. As already
mentioned, no non-trivial simulation between Frege and ex-
tended Frege is known, and the other theorems are difficult
to even formulate in the Boolean context. This also illus-
trates one final point: in order to construct a Frege proof of
a tautology T , it may be useful to interpret T as a polyno-
mial identity and prove it in some of the—weaker but better
structured—arithmetic proof systems.

1.1 Arithmetic proofs with circuits and for-
mulas

Before presenting and explaining the main results of this
paper (in Section 2), we need to introduce our basic arith-
metic proof systems.

Arithmetic circuits and formulas.
Let F be a field. An arithmetic circuit F is a finite directed

acyclic graph as follows. Nodes (or gates) of in-degree zero
are labeled by either a variable or a field element in F. All
the other nodes have in-degree two and they are labeled by
either + or ×. Unless stated otherwise, we assume that F
has exactly one node of out-degree zero, called the output
node, and that moreover the two edges going into a gate
v labeled by × or + are labeled by left and right. This
is to determine the order of addition and multiplication4.
An arithmetic circuit is called a formula, if the out-degree
of each node in it is one (and so the underlying graph is a
directed tree). The size of a circuit is the number of nodes
in it, and the depth of a circuit is the length of the longest
directed path in it. Arithmetic circuits and formulas will be
referred to simply as circuits and formulas.

For a circuit F and a node u in F , Fu denotes the subcir-
cuit of F with output node u. If F,G are circuits then

F⊕G and F⊗G

abbreviate any circuit H whose output node is u+v and u·v,
respectively, where Hu = F and Hv = G. Furthermore,

F +G and F ·G

denote the unique circuit of the form F ′⊕G′ and F ′⊗G′,
respectively, where F ′, G′ are disjoint copies of F and G. In
particular, if F and G are formulas then so are F + G and
F ·G.

A circuit F computes a polynomial F̂ with coefficients
from F in the obvious manner. That is, if F consists of a
single node labeled with z, a variable or an element of F, we

have F̂ := z. Otherwise, F is either of the form G⊕H or

G⊗H, and we let F̂ := Ĝ+ Ĥ or F̂ := Ĝ · Ĥ, respectively.

4Although ultimately, addition and multiplication are com-
mutative.

Substitution is understood in the following sense. Let F =
F (z) be a circuit and z a variable. For a circuit G, the circuit
F (G) is defined as follows: let z1, . . . , zk be the nodes in F
labeled by z. Introduce k disjoint copies G1, . . . , Gk of G,
and let F (G) be the union of F,G1, . . . , Gk where we replace
the node zi by the output node of Gi. Specifically, if F and
G are formulas then so is F (G). F (G) will also be written
as F (z/G).

The system Pf (F)

We now define two proof systems for deriving polynomial
identities. The systems manipulate arithmetic equations,
that is, expressions of the form F = G. In the case of Pf (F),
F,G are formulas, and in the case of Pc(F), F,G are circuits
(see [4] for similar proof systems).

Let F be a field. The system Pf (F) proves equations of the
form F = G, where F,G are formulas over F. The inference
rules are:

R1
F = G

G = F

R2
F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 +G2

R4
F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

The axioms are equations of the following form, with F,G,H
formulas:

A1 F = F

A2 F +G = G+ F

A3 F + (G+H) = (F +G) +H

A4 F ·G = G · F
A5 F · (G ·H) = (F ·G) ·H
A6 F · (G+H) = F ·G+ F ·H
A7 F + 0 = F

A8 F · 0 = 0

A9 a = b+ c , a′ = b′ · c′ , if a, b, c, a′, b′, c′ ∈ F, are such

that the equations hold in F.

The rules and axioms can be divided into two groups. The
rules R1-R4 and axiom A1 determine the logical properties
of equality “=”, and axioms A2-A9 assert that polynomials
form a commutative ring over F.

A proof S in Pf (F) is a sequence of equations F1 =
G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi formulas, such that
every equation is either an axiom A1-A9, or was obtained
from previous equations by one of the rules R1-R4. An equa-
tion Fi = Gi appearing in a proof is also called a proof line.
We consider two measures of complexity for S: the size of S
is the sum of the sizes of Fi and Gi, i ∈ [k], and the number
of proof lines in S is k. (Throughout the paper, [k] stands
for {1, . . . , k}.)

The system Pc(F)

The system Pc(F) differs from Pf (F) in that it manipulates
equations with circuits. Pc(F) has the same rules R1-R4
and axioms A1-A9 as Pf (F), but with F,G,H, F1, F2, G1, G2

ranging over circuits, augmented with the following two ax-
ioms:

C1 F1⊕F2 = F1 + F2 C2 F1⊗F2 = F1 · F2.
A proof in Pc(F) is a sequence of equations F1 =

G1, . . . , Fk = Gk, where Fi, Gi are circuits, and every equa-
tion is either an axiom or was derived by one of the rules.
As for Pf (F), the size of a proof is the sum of the sizes of all
the circuits Fi and Gi, i ∈ [k], and the number of proof lines
of the proof is k. The depth of a Pc(F) proof is the maximal
depth of a circuit appearing in the proof.

The main property of the two proof systems Pc(F) and
Pf (F) is that they are sound and complete with respect to
polynomial identities. The systems prove an equation F =
G if and only if F,G compute the same polynomial:

Proposition 1. Let F be a field.

(i) For any pair F,G of arithmetic formulas, Pf (F) proves

F = G iff F̂ = Ĝ.

(ii) For any pair F,G of arithmetic circuits, Pc(F) proves

F = G iff F̂ = Ĝ.

Part i was shown in [4], part ii is almost identical. Soundness
can be easily proved by induction on the number of lines and
completeness by rewriting F and G as a sum of monomials.

It should be noted that Pf and Pc proofs are closed
under substitution. If F1 = G1, . . . , Fk = Gk is a Pc

proof, z a variable and H a circuit then F1(z/H) =
G1(z/H), . . . , Fk(z/H) = Gk(z/H) is also a Pc proof (sim-
ilarly for Pf and a formula H). This means that from a
general proof, one can obtain the proof of its instance.

For simplicity, we often suppress the explicit dependence
on the field F in Pc and Pf , if the relevant statement holds
over any field.

Comments on the proof systems.
The system Pc is an algebraic analogue of the proposi-

tional proof system circuit Frege (CF). Circuit Frege is poly-
nomially equivalent to the more well-known extended Frege
system (EF) (see [7, 6]). Following this analogy, one can de-
fine an extended Pf proof system, EPf , as follows: an EPf

proof is a Pf proof in which we are allowed to introduce new
“extension” variables z1, z2, . . . via the axiom zi = Fi, where
we require that (i) the variable zi appears in neither Fi nor
in any previous proof-line; and (ii) the last equation in the
proof contains none of the extension variables z1, z2,

The following is completely analogous to the propositional
case (see [7, 6]):

Proposition 2.

(i) The systems Pc and EPf polynomially simulate each
other. More exactly, there is a polynomial p such that
for every pair of formulas F,G, if F = G has a Pc

proof of size s then it has an EPf proof of size p(s),
and if F = G has an EPf proof of size s then it has a
Pc proof of size p(s).

(ii) If F and G are circuits of size s and F = G has a Pc

proof with k proof lines then F = G has a Pc proof of
size poly(s, k).

The second part of this statement is especially useful, be-
cause it is often easier to estimate the number of lines in a
proof rather than its size.

Remark 3. An alternative, polynomially equivalent, def-
inition for Pc can be given as follows. For a circuit F , define
F • as the unfolding of F into a formula. That is, F • := F ,
if F is a leaf, and (G⊕H)• := G•+H•, (G⊗H)• := G• ·H•.
We say that F and G are similar circuits, if F • is the same
formula as G•. Then A1, C1, C2 could be replaced by the
following single axiom:

A1’ F = G, whenever F and G are similar.

The axiom A1’ can be proved from A1, C1, C2 by a
polynomial-size proof, and vice versa.

Notation for matrices inside proofs.
In this paper, matrices are understood as matrices whose

entries are circuits and operations on matrices are operations
on circuits. We illustrate this for square matrices. Let F =
{Fij}i,j∈[n] be an n×n matrix whose entries are circuits Fij ;
and similarly G = {Gij}i,j∈[n]. Addition and multiplication
is defined in the obvious way, namely

F +G = {Fij +Gij}i,j∈[n] , F ·G = {
n∑

p=1

Fip ·Gpj}i,j∈[n] ,

where + and · on the right-hand side is addition and mul-
tiplication on circuits. If a is a single circuit, a · F is the
matrix {a · Fij}i,j∈[n]. An equation F = G denotes the set
of equations Fij = Gij , i, j ∈ [n].

2. OVERVIEW OF RESULTS AND TECH-
NIQUES

2.1 Main theorem
It is well known that the determinant can be uniquely

characterized as the function that satisfies the following two
identities for any pair of n× n matrices X,Y and any (up-
per or lower) triangular matrix Z with z11, . . . , znn on the
diagonal:

det(X · Y) = det(X) · det(Y), (1)

det(Z) = z11 · · · znn. (2)

Moreover, other properties of the determinant, such as the
cofactor expansion, easily follow from (1) and (2).

The main goal of this paper is to prove the following the-
orem:

Theorem 4 (Main theorem). For any field F:

(i) There exists a circuit det such that (1) and (2) have
polynomial-size Pc(F) proofs. Moreover, every5 circuit
in the proof has depth at most O(log2(n)).

(ii) There exists a formula det such that (1) and (2) have

Pf (F) proofs of size nO(log n).

As mentioned before, a large part of the construction is
not related directly to the determinant. It is rather a series
of structural theorems about the systems Pf and Pc. These
are obtained by reproducing classical results in arithmetic
circuit complexity in the setting of arithmetic proofs (for a
recent survey on arithmetic circuit complexity see [11]). The

5We assume that the product z11 · · · znn in (2) is written as
a formula of depth O(logn).

most important of those results is showing that Pc proofs
can be balanced, in the sense that Pc proofs of size s (of
polynomially bounded syntactic degree equations) can be
polynomially simulated by Pc proofs in which each circuit
has depth O(log2 s).

We do not know whether it is possible to prove Theorem
4 directly, perhaps by formalizing the elegant algorithm of
Berkowitz [2]. One advantage of the algorithm is that, being
division-free, it would dispense of Theorem 9 and allow to
generalize Theorem 4 to an arbitrary commutative ring (as
opposed to a field). We also admit that working with circuits
and proofs with divisions turned out to be quite tedious.
However, our construction is intended to emphasize general
properties of arithmetic proof systems, and the structural
theorems are in fact our main contribution.

2.2 Balancing Pc proofs and simulating Pc by
Pf

In the seminal paper [18], Valiant et al. showed that if a
polynomial f of degree d can be computed by an arithmetic
circuit of size s, then f can be computed by a circuit of
size poly(s, d) and depth O(log s log d + log2 d). This is a
strengthening of an earlier result by Hyafil [5], showing that

f can be computed by a formula of size (s(d + 1))O(log d).
We will show that those results can be efficiently simulated
within the framework of arithmetic proofs.

Instead of the degree of a polynomial, we focus on the
syntactic degree of a circuit. Let F be an arithmetic circuit.
The syntactic degree of F , degF , is defined as follows:

(i) If F is a field element or a variable, then degF = 0
and degF = 1, respectively;

(ii) deg(F⊕G) = max(degF,degG), and deg(F⊗G) =
degF + degG.

The syntactic degree of an equation F = G is
max(degF,degG), and the syntactic degree of a proof S is
the maximum of the syntactic degrees of equations in S. If
F is a circuit and u is a node in F we also write deg(v) to
denote degFv.

In accordance with [18], we will construct a map [·] that
maps any given circuit F of size s and syntactic degree d to
a circuit [F] computing the same polynomial, such that [F]
has size poly(s, d) and depth O(log s log d+ log2 d). We will
show the following:

Theorem 5. Let F,G be circuits of syntactic degree at
most d such that F = G has a Pc proof of size s. Then:

(i) The equation [F] = [G] has a Pc proof of size poly(s, d)
and depth O(log s · log d+ log2 d).

(ii) If F,G have depth at most k then F = G has a Pc proof
of size poly(s, d) and depth O(k+ log s · log d+ log2 d).

We also obtain the following simulation of Pc by Pf :

Theorem 6. Assume that F,G are formulas of syntactic
degree ≤ d such that F = G has a Pc proof of size s. Then
F = G has a Pf proof of size (s(d+ 1))O(log d) ≤ sO(log s).

This simulation is polynomial if F and G have a constant
syntactic degree. Let us emphasize that the syntactic degree
of a formula of size s is at most s, and hence the simulation
is at most quasipolynomial.

Homogenization and degree bound in arithmetic
proofs.

One ingredient of Theorems 5 and 6 is to show that using
circuits of high syntactic degree cannot significantly shorten
Pc proofs. That is, if we want to prove an equation of syn-
tactic degree d, we can without loss of generality use only
circuits of syntactic degree at most d. This result is the
proof-theoretic analog of a result by Strassen, who showed
how to separate arithmetic circuits into their homogeneous
parts (implicit in [16]).

We say that a circuit F is syntactically homogeneous, if for
every sum-gate u1 +u2 in F we have deg(u1) = deg(u2). For

a circuit F and a number k, we introduce a circuit F (k) which
computes the syntactically k-homogeneous part of F (see
Section 3 for the definition). The syntactic degree of a Pc

proof is the maximal syntactic degree of a circuit appearing
in it. We show the following:

Proposition 7. Assume that F = G has a Pc proof of
size s. Then

(i) F (k) = G(k) has a Pc proof of size s · poly(k) and a
syntactic degree at most k, for any k.

(ii) If degF,degG ≤ d then F = G has a Pc proof of
syntactic degree at most d and size s · poly(d).

2.3 Circuits and proofs with division
We denote by F(X) the field of formal rational functions

in the variables X over the field F. It is convenient to extend
the notion of a circuit so that it computes rational functions
in F(X). This is done in the following way: a circuit with
division F is a circuit which may contain an additional type
of gate with fan-in 1, called an inverse or a division gate,
denoted (·)−1. If a node v computes the rational function
f , then v−1 computes the rational function 1/f . Moreover,
we require that for every division node v−1 in F , v does not
compute the zero rational function. If no division gate com-
putes the zero rational function we say that F is defined, and
otherwise, we say that F is undefined. One should note, for
instance, that the circuit (x2 + x)−1 over GF (2) is defined,
since x2 + x is not the zero rational function (although it
vanishes as a function over GF (2)).

We define the system P−1
c (F), operating with equations

F = G for F and G circuits with division computing rational
functions in F(X). First, we extend the axioms of Pc(F) to
apply to circuits with division. Second, we add the following
axiom:

D F · F−1 = 1 ,

provided that F−1 is defined.

Remark 8. The system P−1
c (F) polynomially simulates

the rule

F = G

F−1 = G−1
.

Moreover, the identities (F−1)−1 = F and (F ·G)−1 = G−1 ·
F−1 have linear size proofs in P−1

c (F).

As before, we sometimes suppress the explicit dependence
on the field in P−1

c (F) if the relevant statement is field inde-
pendent.

Strassen [16] showed that division gates can be eliminated
from arithmetic circuits computing polynomials over large

enough fields, with only a polynomial increase in size. We
will show the proof-theoretic analog of Strassen’s result over
arbitrary fields, namely that Pc(F) polynomially simulates
P−1
c (F) for any field F:

Theorem 9. Let F be any field and assume that F and G
are circuits without division gates such that degF,degG ≤
d. Suppose that F = G has a P−1

c (F) proof of size s. Then
F = G has a Pc(F) proof of size s · poly(d).

A corollary of Theorem 9 is that Pc(F) polynomially sim-
ulates the rule

F ·G = 0

F = 0
, if Ĝ 6= 0

(provided the syntactic degree of G is polynomially
bounded).

To prove Theorem 9, we first assume that the underlying
field F has an exponential size. Under this assumption, we
cannot eliminate division gates in GF (2) which is, from the
Boolean proof complexity viewpoint, the most interesting
field. To deal with small fields and specifically GF (2) we
have to show how to simulate large fields in small ones, as
we explain in what follows.

Simulating large fields in small fields.
The idea behind simulating large fields in small ones is to

treat the elements of GF (pn) as n×n matrices over GF (p).
This enables one to simulate computations and proofs over
GF (pn) by those over GF (p). We prove the following:

Theorem 10. Let p be a prime power and n a natural
number and let F,G be circuits over GF (p). Assume that
F = G has a Pc(GF (pn)) proof of size s. Then F = G has
a Pc(GF (p)) proof of size s · poly(n).

2.4 The determinant as a rational function
and as a polynomial

To prove the main theorem (Theorem 4) one needs to con-
struct a circuit (and a formula) computing the determinant
polynomial which can be used efficiently inside arithmetic
proofs. We first compute the determinant as a rational
function, using a circuit with divisions denoted DET(X),
and show that P−1

c admits short proofs of the properties of
DET(X). This is achieved by defining DET(X) in terms
of the matrix inverse X−1 and inferring properties of DET
from the identities X ·X−1 = X−1X = I, which are shown
to have polynomial-size P−1

c proofs. The argument is basi-
cally a Gaussian elimination.

However, we cannot yet conclude Theorem 4 which speaks
about (division-free) Pc proofs (it is worth mentioning that
we also cannot yet conclude the short NC2-Frege proofs for
the determinant identities, because P−1

c proofs do not imme-
diately correspond to propositional Frege proofs). Theorem
9 cannot be directly applied because it allows to eliminate
division gates in P−1

c proofs only if the equations proved are
themselves division-free. We therefore proceed to construct
a division-free circuit det(X), computing the determinant as
a polynomial. Assuming we can prove efficiently in P−1

c that
det(X) = DET(X), we are done, since we can now eliminate
division gates from P−1

c proofs of division-free equations, us-
ing Theorem 9. To this end, we define the det(X) polyno-
mial as the nth term of the Taylor expansion of DET(I+zX)

at z = 0. This enables us to demonstrate short proofs of
det(X) = DET(X) and conclude the argument.

2.5 Applications
Equipped with feasible proofs of the determinant identi-

ties, short proofs of several related identities follow. Cofac-
tor expansion of the determinant will be given in Section 9.
Another example is the formula completeness of the deter-
minant. In [17], Valiant showed that every formula of size
s can be written as a projection of a determinant of a ma-
trix of a linear dimension. We can conclude that this holds
feasibly already in Pc:

Proposition 11. Let F be a formula of size s. Then
there exists a matrix M of dimension 2s× 2s whose entries
are variables or elements of F such that the identity

F = det(M)

has a polynomial-size O(log2 s)-depth Pc(F) proof (and hence
also a quasipolynomial-size Pf (F) proof), where det is the
circuit (resp. the formula) from Theorem 4.

In this paper we are mainly interested in proofs with no
assumptions other than the axioms A1-A9. Nevertheless,
we can introduce the notion of a proof from assumptions
as follows: let S be a set of equations. Then a Pc proof
from the assumptions S is a proof that can use equations
in S as additional axioms (and similarly for Pf proofs from
assumptions). Proofs from assumptions are far less well-
behaved than standard arithmetic proofs. For instance, nei-
ther Theorem 6 nor Theorem 9 hold for proofs from a general
nonempty set S of assumptions. We now give an important
example of a proof from assumptions.

Given a pair of n × n matrices X,Y , recall that the ex-
pressions XY = I and Y X = I, are abbreviations for the
list of n2 equalities between the appropriate entries.

Proposition 12. Let F be any field. The equations
Y X = In have polynomial-size and O(log2 n)-depth Pc(F)
proofs from the equations XY = In. In the case of Pf (F),
the proof has a quasipolynomial-size.

Determinant identities in NC2-Frege and Frege sys-
tems.

When considering the field F to be GF (2), there is a
close connection between our proof systems and the stan-
dard propositional proof systems. Consider the proposi-
tional proof systems Frege (F), extended Frege (EF) and
circuit Frege (CF). For the definitions of Frege and ex-
tended Frege see [7] and for the definition of circuit Frege
see [6], where it is also shown that CF and EF are polyno-
mially equivalent.

For simplicity, we shall assume that F , EF and CF are
all in the Boolean basis +, ·, 0, 1 (addition and multiplica-
tion modulo 2, logical equivalence, and the two Boolean
constants)6. Then every arithmetic circuit is automatically
also a Boolean circuit, and an equality like G = H can be
interpreted as the logical equivalence G ≡ H, written as
(G+H) + 1. Hence Pf (GF (2)) and Pc(GF (2)) can be con-
sidered as fragments of F and CF , respectively: the finite

6Note that by Reckhow’s result, as stated in [7], the partic-
ular choice of basis is immaterial. We could also have ≡ as
a primitive.

set of (schematic) axioms and rules of Pf (GF (2)) now serve
as Frege axioms and rules, and similarly for Pc(GF (2)).
Note that x2 = x is a propositional tautology but not a
polynomial identity, and hence F and CF are (expressively)
stronger than their arithmetic counterparts. In fact, one can
polynomially simulate the full F or CF systems by adding
the following new axiom

G2 = G

to Pf (GF (2)) or Pc(GF (2)), where G is any formula or a
circuit, respectively. To see this, it is sufficient to show that
the augmented systems are complete with respect to propo-
sitional tautologies: they prove F = 1 whenever F evaluates
to 1 on every 0, 1-input.

This means that upper bounds in Pf (GF (2)) and
Pc(GF (2)) are in fact upper bounds in F and CF (and hence
also in EF), respectively.

In what follows XY = In, and similarly Y X = In, denote
the conjunction of n2 formulas of the form (xi,1 · y1,j + · · ·+
xi,n · yn,j) ≡ δij , where +, · are addition and multiplication
modulo 2, respectively, ≡ is the logical equivalence, and δij ∈
{0, 1} is given by δij = 1 iff i = j. We have the following:

Theorem 13.

(i). The properties of the determinant as in Theorem 4
(interpreted as Boolean tautologies over GF (2)) have
polynomial-size circuit Frege proofs, with every circuit
of depth at most O(log2 n). In the case of Frege, the
proofs have quasipolynomial-size.

(ii). The implication (XY = In) → (Y X = In) has a
polynomial-size circuit Frege proof, with every circuit
of depth at most O(log2 n), and a quasipolynomial-size
Frege proof.

Proof. Part (i) is a direct consequence of Theorem 4
and (ii) of Proposition 12, both using the fact that proofs in
Pc(GF (2)) and Pf (GF (2)) can be interpreted as proofs in
circuit Frege and Frege, respectively. QED

A family of polynomial-size CF proofs in which every
proof-line G is of depth O(log2 |G|), is also called an NC2-
Frege proof. Hence, Theorem 13 states that NC2-Frege
has polynomial-size proofs of the propositional tautologies
(XY = I)→ (Y X = I).

Theorem 13 thus settles an important open problem in
proof complexity and feasible mathematics, namely, whether
basic properties of the determinant like det(A) · det(B) =
det(AB) and the cofactor expansion (see Proposition 44),
as well as the hard matrix identities, have polynomial-size
proofs in a proof system which corresponds to the circuit
class NC2.

Remark 14. We believe that Theorem 13 can be extended
to any finite field or the field of rationals (after encoding field
elements as Boolean strings). For finite fields, this is rather
straightforward. In the rational case, one would have to show
that the Pc(Q) proofs constructed in Theorem 4 involve only
constants whose Boolean representation is polynomial.

3. HOMOGENIZATION AND BOUNDING
THE DEGREE IN Pc(F) PROOFS

In this section we wish to construct the circuits F (k) com-
puting the k-homogeneous part of F and prove Proposition

7. First, let us say that a circuit F is non-redundant, if either
F is the constant 0, or F does not contain the constant 0 at
all. Any circuit F can be transformed to a non-redundant
circuit F] as follows: successively replace all nodes of the
form u + 0, 0 + u by u and u · 0, 0 · u by 0, until no such
replacement is possible.

Let k be a natural number. We define F (k) as follows. For
every node u in F , introduce k+ 1 new nodes u(0), . . . , u(k).

(i). Assume u is a leaf. Then, u(0) := u, in case u is a

field element, and u(1) := u in case u is a variable, and
u(i) := 0 otherwise.

(ii). If u = u1 + u2, let u(i) := u
(i)
1 + u

(i)
2 , for every i =

0, . . . , k.

(iii). If u = u1 · u2, let u(i) :=
∑i

j=0 u
(j)
1 · u

(i−j)
2 .

Finally, we define F (k) as the circuit G], where G is the
circuit with the output node w(k) and w is the output node
of F .

Note the following:

(1) F (k) has size O(s(k + 1)2)), where s is the size of F .

(2) F (k) is a syntactically homogeneous non-redundant cir-
cuit. Its syntactic degree is either k, or F is the constant
0.

Notation: We allow circuits and formulas to use only sum
gates with fan-in two. An expression

∑k
i=1 xi is an ab-

breviation for a formula of size O(k) and depth O(log k)

with binary sum gates. For example, define
∑k

i=1 xi :=∑bk/2c
i=1 xi +

∑k
i=dk/2e xi . One can see that basic identities

such as

k∑
i=1

xi =

m∑
i=1

xi +

k∑
i=m+1

xi , or y ·
k∑

i=1

xi =

k∑
i=1

yxi

have Pf proofs of size O(k2) and depth O(log k).

Lemma 15. Let F1, F2 be circuits of size ≤ s and k a
natural number. The following have proofs of size s · poly(k)
and syntactic degree ≤ k.

(i). (F1⊕F2)(k) = F
(k)
1 + F

(k)
2 ,

(ii). (F1⊗F2)(k) =
∑k

i=0 F
(i)
1 · F (k−i)

2 .

Proof. It is easy to see that for any circuit H of size s,
H = H] has a proof of size O(s). This, and the definition of

F (k), gives (F1⊕F2)(k) = F
(k)
1 ⊕F

(k)
2 . Hence (F1⊕F2)(k) =

F
(k)
1 +F

(k)
2 by axiom C1. Since F

(k)
1 , F

(k)
2 , (F1⊕F2)(k) have

size O(s(k + 1))2, we obtain (i). Part (ii) is similar. QED

Lemma 16. If F is a circuit with syntactic degree ≤ d
and size s then

F =
d∑

k=0

F (k)

has a Pc(F) proof of syntactic degree ≤ d and size s ·poly(d).

Proof. For every node u in F , construct a proof of Fu =∑deg(u)
k=0 F

(k)
u . This is done by induction on depth of u. If

u is a leaf, this stems from the definition of F
(k)
u , and if

u = u1 + u2 or u = u1 · u2, it is an application of the
previous lemma. QED

Proof of Proposition 7. Part (ii) follows from (i) by Lemma
16, hence it is sufficient to prove part (i). Let us first show

that if F = G is an axiom of Pc(F) of size s then F (k) = G(k)

has a proof of size s ·poly(k) and syntactic degree ≤ k. This
is an application of Lemma 15. Let c be the constant such
that equations (i) and (ii) in Lemma 15 have proofs of size
O(s · (k + 1)c).

The lemma gives a proof (F1⊕F2)(k) = (F1 + F2)(k) and

(F1⊗F2)(k) = (F1 ·F2)(k), as required for the axioms C1 and
C2.

A1 and A9 are immediate. For the other axioms, consider
for example the axiom F1 · (F2 · F3) = (F1 · F2) · F3, where
the circuits have size ≤ s. We have to construct a proof of

(F1 · (F2 · F3))(k) = ((F1 · F2) · F3)(k) . (3)

By part (ii) of Lemma 15 the equations

(F1 · (F2 · F3))(k) =

k∑
i=0

F
(i)
1

(
k−i∑
j=0

F j
2F

k−i−j
3

)
(4)

((F1 · F2) · F3)(k) =

k∑
i=0

(
i∑

j=0

F j
1F

i−j
2

)
· F (k−i)

3 , (5)

can be proved by proofs with size roughly s ·(k+1)c ·(k+1).
In Pc(F), the right hand sides of both (4) and (5) can be

written as
∑

i+j+l=k F
(i)
1 F

(j)
2 F

(l)
3 , by a proof of size roughly

s(k + 1)4 . This gives the proof of (3) of size s · poly(k).
Next, assume that F = G is derived from the equations

F1 = G1, F2 = G2 by means of the rules R1-R4, and we
need to construct the proof of F (k) = G(k) from the set of

equations F
(i)
1 = G

(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The hardest

case is the rule

F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

We have to prove (F1 · F2)(k) = (G1 · G2)(k). By Lemma

15, we have proofs of (F1 ·F2)(k) =
∑

i=0,...k F
(i)
1 F

(k−i)
2 and

(G1 · G2)(k) =
∑

i=0,...kG
(i)
1 G

(k−i)
2 . Hence (F1 · F2)(k) =

(G1 · G2)(k) can be proved from the assumptions F
(i)
1 =

G
(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The proof has size roughly

s · (k + 1)c(k + 1). QED

4. BALANCING Pc PROOFS
In this section we prove Theorem 5 which is a proof-

theoretic analog of the following result:

Theorem 17 (Valiant et al. [18]). Let F be an
arithmetic circuit of size s computing a polynomial f of de-
gree d. Then there exists an arithmetic circuit [F] computing
f with depth O(log2 d+ log s · log d) and size poly(d, s).

We first give an outline of the construction of [F], which
closely follows that in [18] (we also refer the reader to [8] for
an especially clear exposition). We emphasize that in our
case, the relevant parameter is the syntactic degree of F : [F]
will have size poly(s, d) and depth O(log2 d + log s · log d),
where d is the syntactic degree of F .

We write u ∈ F to mean that u is a node in the circuit F .
The following definition is important for the construction of
balanced circuits: let w, v be two nodes in F . We define the

polynomial ∂wFv as follows:

∂wFv :=

0, if w 6∈ Fv,
1, if w = v , and otherwise:
∂wFv1 + ∂wFv2 , v = v1 + v2;
(∂wFv1) · Fv2 , if either v = v1 · v2 and

deg(v1) ≥ deg(v2),
or v = v2 · v1 and

deg(v1) > deg(v2).

The idea behind this definition is the following: let w, v be
two nodes in F such that 2 deg(w) > deg(v). Then for any
product node v1 · v2 ∈ Fv, w can be a node in at most one
of Fv1 , Fv2 , namely the one of a higher syntactic degree. If
we replace the node w in Fv by a new variable z, Fv then
computes a polynomial g(z, x1, . . . , xn) which is linear in z,
and ∂wFv is the usual partial derivative ∂zg.

It is not hard to show the following:

Claim 18. Let w, v be two nodes in a circuit F . Then
the polynomial ∂wFv has degree at most deg(v)− deg(w).

In order to construct [F], we can assume without loss of
generality that F itself is a syntactic homogenous circuit of
size s′ = O(d2 · s). This is because a circuit of size s and
syntactic degree d can be written as a sum of d+ 1 syntac-
tically homogeneous circuits of size at most s′ and syntactic
degree at most d. Now the construction proceeds by induc-
tion on i = 0, . . . , dlog de. In each step i = 0, . . . , dlog de we
construct:

(i). Circuits computing F̂v, for all nodes v in F with 2i−1 <
deg(v) ≤ 2i;

(ii). Circuits computing ∂wFv, for all nodes w, v in F with
2i−1 < deg(v)− deg(w) ≤ 2i and deg(v) < 2 deg(w).

Each step adds depth O(log s′), which at the end amounts
to a depth O(log2 d+log d · log s) circuit. Furthermore, each
node v in F adds O(s′) nodes in the new circuit and each pair
of nodes v, w in F adds also O(s′) nodes in the new circuit.
This finally amounts to a circuit of size O(s′3) = O(d6 · s3).

Let us now give the formal definition of [F]. First, for a
circuit G and a natural number m, let

Bm(G) :=
{
t ∈ G : t = t1 · t2,deg(t) > m and

deg(t1),deg(t2) ≤ m
}
.

Definition of [F].
Let F be an arithmetic circuit of syntactic degree d.
If F is not syntactic homogenous, let

[F] := [F (0)] + . . .+ [F (d)] .

Otherwise, assume that F is a syntactically homogenous
circuit of degree d. For any node v ∈ F we introduce the
corresponding node [Fv] in [F] (intended to compute the

polynomial F̂v); and for any pair of nodes v, w ∈ F such
that 2 deg(w) > deg(v), we introduce the node [∂wFv] in
[F] (intended to compute the polynomial ∂wFv).

The construction is defined by induction on i =
0, . . . , dlog de, as follows:

Part (I).
Let v ∈ F :

Case 1: Assume that deg(v) ≤ 1, then Fv computes a linear
polynomial a1x1 + . . .+anxn + b (where, by homogeneity of
F , b 6= 0 implies that all ai’s equal 0). Define

[Fv] := a1x1 + . . .+ anxn + b.

Case 2: Assume that for some 0 ≤ i ≤ dlog(d)e:

2i < deg(v) ≤ 2i+1.

Put m = 2i, and define

[Fv] :=
∑

t∈Bm(Fv)

[∂tFv] · [Ft1] · [Ft2],

where t1, t2 are nodes such that t = t1 · t2. (Note that here
[∂wFv], [Ft1] and [Ft2] are nodes.)

Part (II).
Let w, v be a pair of nodes in F with 2 deg(w) > deg(v):

Case 1: Assume w is not a node in Fv. Define

[∂wFv] := 0.

Case 2: Assume that w is in Fv and 0 ≤ deg(v)−deg(w) ≤
1. Thus, by Claim 18, the polynomial ∂wfv is a linear poly-
nomial a1x1 + . . .+ anxn + b. Define

[∂wFv] := a1x1 + . . .+ anxn + b.

Case 3: Assume that w is in Fv and that for some 0 ≤ i ≤
dlog(d)e:

2i < deg(v)− deg(w) ≤ 2i+1.

Put m = 2i + deg(w). Define:

[∂wFv] :=
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2] ,

where t1, t2 are nodes such that t = t1 · t2 and deg(t1) ≥
deg(t2), or t = t2 · t1 and deg(t2) > deg(t1). Finally, define
[F] as the circuit with the output node [Fu], where u is the
output node of F .

One should make sure that the definition of [F] is well
defined, and that it has the correct depth and size:

Lemma 19. Let F be a circuit of size s and syntactic de-

gree d. Then [F] is a circuit computing F̂ , [F] is of size
poly(s, d) and depth O(log2 d+ log s log d). Moreover, every
node [∂wFv] in [F] computes the polynomial ∂wFv.

Proof. The proof is as in [18] (see also [8]). We shall
give a partial sketch of the proof here, for the benefit of the
reader.

First, assume that F is syntactic homogeneous of degree
d. We need to verify that [F] is well-defined. That is, at
stage i = 0, . . . , dlog de, we compute all [Fv] and [∂wFu] for
all nodes v, u, w ∈ F such that 2i < deg(v) ≤ 2i+1 and
2i < deg(v)− deg(u) ≤ 2i+1, and we want to show that the
computation uses only nodes computed in previous stages.

Take, for example, Case 2 in Part (I). For any t ∈ Bm(Fv),
m < deg(t) ≤ deg(v) ≤ 2m. This implies that deg(v) −
deg(t) ≤ m = 2i and deg(t) < 2 deg(v). Hence, we have
already computed [∂tFv]. We have also already constructed
[Ft1], [Ft2], since deg(t1), deg(t2) < m = 2i.

Inspecting the construction, [F] has size poly(s) and depth
O(log s · log d), given that F is syntactically homogeneous of
size s and degree d. If F is not syntactically homogeneous,

the definition [F] =
[
F (0)

]
+ . . .

[
F (d)

]
gives a circuit of size

poly(s, d) and depth O(log2 d+log s · log d), since every F (k)

has size O(s · k2). QED

We need to show that properties of [F] can be proved
inside the system Pc. The key ingredient is given by the
following Lemma.

Lemma 20 (Main simulation lemma). Let F1, F2 be
circuits of syntactic degree at most d and size at most s.
Then there exist Pc proofs of:

[F1 ⊕ F2] = [F1] + [F2] , (6)

[F1 ⊗ F2] = [F1] · [F2] , (7)

such that the proofs have size poly(s, d) and depth O(log2 d+
log d · log s).

The proof of Lemma 20 is deferred to the end of this
section. We now use Lemma 20 to prove Theorems 5 and 6.

Theorem 21 (Theorem 5 restated). Let F,G be
circuits of syntactic degrees at most d such that F = G has
a Pc proof of size s. Then

(i). [F] = [G] has a Pc proof of size poly(s, d) and depth
O(log s · log d+ log2 d).

(ii). If F,G have depth at most t then F = G has a Pc proof
of size poly(s, d) and depth at most O(t+ log s · log d+
log2 d).

Proof. Part (i). Assume that F = G has syntactic de-
gree d and a Pc proof of size s. By Proposition 7, F = G
has a Pc proof of syntactic degree d and size s′ = s ·poly(d).
So let us consider such a proof S. By induction on the num-
ber of lines in S, construct a Pc proof of [F1] = [F2], where
F1 = F2 is a line in S.

Let m0 and k0 be such that (6) and (7) have Pc proofs of
size at mostm0 and depth k0, whenever F1⊕F2, respectively,
F1⊗F2 have size at most s′ and syntactic degree at most d.
By Lemma 20, we can choose m0 = poly(s′, d) and k0 =
O(log s′ · log d+ log2 d).

First, show that if a line F = H in S is a Pc axiom then
[F] = [H] has a Pc proof of size c1m0 and depth c2k0, where
c1, c2 are some constants independent of s′, d. The axiom
A1 is immediate and the axiom A9 follows from the fact
that [F] = F̂ , if deg(F) = 0. The rest of the axiom are an
application of Lemma 20, as follows. Axioms C1 and C2 are
already the statement of Lemma 20. For the other axioms,
take, for example,

F1 · (G1 +G2) = F1 ·G1 + F1 ·G2 .

We are supposed to give a proof of

[F1 · (G1 +G2)] = [F1 ·G1 + F ·G2] ,

with a small size and depth. By Lemma 20 we have a Pc

proof

[F1 · (G1 +G2)] = [F1] · [G1 +G2]

= [F1] · [G1] + [F1] · [G2] = [F1] · ([G1] + [G2]) .

Lemma 20 gives again

[F1] · ([G1] + [G2]) = [F1] · [G1 +G2] = [F1 · (G1 +G2)] .

Here we applied Lemma 20 to circuits of size at most s′, and
the proof of [F1 · (G1 +G2)] = [F1 ·G1 + F ·G2] has size at
most, say, 100m0 and depth at most 10k0.

An application of rules R1, R2 translates to an application
of R1, R2. For the rules R3 and R4, it is sufficient to show
the following: if S uses the rule

F1 = F2 G1 = G2

F1 ◦G1 = F2 ◦G2
, ◦ ∈ {·,+},

then there is a proof of [F1 ◦G1 = F2 ◦G2], of size c1m0 and
depth c2k0, from the equations [F1] = [G1] and [F2] = [G2].
This is again an application of Lemma 20.

Altogether, we obtain a proof of [F] = [G] of size at most
c1s
′m0 and depth c2k0.

Part (ii). Using (i), it is sufficient to prove the following:

Claim 22. If F is a circuit with depth t, syntactic degree
d and size s, then F = [F] has a Pc proof of size poly(s, d)
and depth at most O(t+ log s · log d+ log2 d).

Using Lemma 20, this claim can be easily proved by induc-
tion on s. QED

Theorem 23 (Theorem 6 restated). Assume that
F,G are formulas of syntactic degree at most d such that
F = G has a Pc proof of size s. Then F = G has a Pf proof

of size (s(d+ 1))O(log d).

Proof. Recall the definition of the formula F • from Re-
mark 3. It is not hard to show the following:

Claim 24. If H1 = H2 has a Pc proof with p proof lines
and depth k, then H•1 = H•2 has a Pf proof of size O(p2k).

Let F and G be as in the assumption. The previous the-
orem and Claim 24 give a Pf proof of

[F]• = [G]•

of size s · 2O(log s·log d+log2 d) = (s(d+ 1))O(log d).
To complete the proof, it is sufficient to show that:

Claim 25. If H is a formula of size s and syntactic degree
d, then [H]• = H has a Pf proof of size (s(d+ 1))O(log d).

This is proved by induction on s using Lemma 20. QED

Proof of Lemma 20
It is sufficient to prove the statement under the assumption
that F1⊕F2 and F1⊗F2 are syntactically homogeneous. This
is because of the following: assume that the lemma holds for
syntactically homogeneous circuits. First, note that for any
circuit of syntactic degree d,

[F] =
[
F (0)

]
+
[
F (1)

]
+ · · ·+

[
F (d)

]
has a proof of size poly(s, d) and depth O(log d·log s+log2 d):
if F is not syntactically homogeneous, then this stems from

the definition of [F]; otherwise, F is syntactically homoge-

neous, and so [F (k)] is the circuit 0 whenever k < d and it is

sufficient to construct the proof of [F] = [F (d)], which can be
done by induction on the size of F . Second, if for example
F1⊕F2 is not syntactically homogenous, then by definition
of [·], we have

[F1⊕F2] =

d∑
k=0

[
(F1⊕F2)(k)

]
,

where d = deg(F1⊕F2). By the definition of F (k),

(F1⊕F2)(k) is a syntactically homogeneous circuit which is

either of the form F
(k)
1 ⊕F

(k)
2 , or it is of the form F

(k)
e , if

F
(k)

e′ = 0, {e, e′} = {1, 2}. In both cases we obtain a proof

of [(F1 + F2)(k)] = [F
(k)
1] + [F

(k)
2], of small size and depth.

This gives a Pc proof of

d∑
k=0

[
(F1⊕F2)(k)

]
=

d∑
k=0

[
(F1)(k)

]
+
[
(F2)(k)

]

=

d∑
k=0

[
(F1)(k)

]
+

d∑
k=0

[
(F2)(k)

]
.

We thus consider the syntactically homogeneous case. Let
m(s, d) and r(s, d) be functions such that for any circuit F
of syntactic degree d and size s, [F] has depth at most r(s, d)
and size at most m(s, d). By Lemma 19, we can choose

m(s, d) = poly(s, d) and r(s, d) = O(log2 d+ log d · log s).

Notation: In the following, [Fv] and [∂wFv] will denote cir-
cuits: [Fv] and [∂wFv] are the subcircuits of [F] with output
nodes [Fv] and [∂wFv], respectively; the defining relations
between the nodes of [F] (see the definition of [F] above)
translate to equalities between the corresponding circuits.
For example, if v and m are as in Case 2, part (I) of the
definition of [F], then, using just the axioms C1 and C2, we
can prove

[Fv] =
∑

t∈Bm(Fv)

[∂tFv] · [Ft1] · [Ft2] . (8)

Here, the left hand side is understood as the circuit [Fv] in
which [∂tFv] , [Ft1] , [Ft2] appear as subcircuits, and so can
share common nodes, while on the right hand side the cir-
cuits have disjoint nodes. Also, note that if F has size s
and degree d, the proof of (8) has size O(s2m(s, d)) and has
depth O(r(s, d)). We shall use these kind of identities in

the current proof.
The following statement suffices to conclude the lemma.

The recurrence (9) implies λ(s, d) = poly(s, d) and it is
enough to take F in the statement as either F1 ⊕ F2 or
F1 ⊗ F2, and v as the root of F .

Statement.
Let F be a syntactically homogenous circuit of syntactic

degree d and size s, and let i = 0, . . . , dlog de. There exists
a function λ(s, i) not depending on F with

λ(s, 0) = O(s4) and λ(s, i) ≤ O(s4 ·m(s, d)) +λ(s, i− 1),
(9)

and a Pc proof-sequence Ψi of size at most λ(s, i) and depth
at most O(r(s, d)), such that the following hold:

Part (I): For every node v ∈ F with

deg(v) ≤ 2i, (10)

Ψi contains the following equations:

[Fv] = [Fv1] + [Fv2] , in case v = v1 + v2, and (11)

[Fv] = [Fv1] · [Fv2] , in case v = v1 · v2. (12)

Part (II): For every pair of nodes w 6= v ∈ F , where w ∈
Fv, and with

deg(v)− deg(w) ≤ 2i and (13)

2 deg(w) > deg(v), (14)

Ψi contains the following equations:

[∂wFv] = [∂wFv1] + [∂wFv2], in case v = v1 + v2; (15)

[∂wFv] = [∂wFv1] · [Fv2], (16)

in case v = v1 · v2 and deg(v1) ≥ deg(v2)

or v = v2 · v1 and deg(v1) > deg(v2).

We proceed to construct the sequence Ψi by induction on
i.

Base case: i = 0. We need to devise the proof sequence Ψ0.

Part (I).
Let deg(v) ≤ 20. By definition, [Fv] =

∑n
i=1 aixi + b,

where ai’s and b are field elements. If v = v1 + v2, we have

also [Fve] =
∑n

i=1 a
(e)
i xi + b(e), for e = 1, 2. Hence the

equation [Fv] = [Fv1] + [Fv2] is the (true) identity:

n∑
i=1

aixi + b =

n∑
i=1

a
(1)
i xi + b(1) +

n∑
i=1

a
(2)
i xi + b(2) ,

which has a proof of size O(s2) and depth O(log s) (we as-
sume without loss of generality that n ≤ s).

In case v = v1 · v2, either deg(v1) = 0 or deg(v2) = 0 and
the proof of [Fv] = [Fv1] · [Fv2] is similar.

Part (II).
Since deg(v)−deg(w) ≤ 1, we have [∂wFv] =

∑n
i=1 aixi +

b, for some field elements ai’s and b.
In case v = v1 + v2, we have deg(ve) − deg(w) ≤ 1

and so [∂wFve] =
∑n

i=1 a
(e)
i xi + b(e), where e = 1, 2.

The assumption w 6= v and Lemma 19, guarantee that
[∂wFv] = [∂wFv1] + [∂wFv2] is a correct identity, and we
can thus proceed as the base case of Part (I) above.

In case v = v1 · v2, assume without loss of generality that

deg(v1) ≥ deg(v2). Again, we have [∂wFv1] =
∑n

i=1 a
(1)
i xi+

b(1). From the assumptions, we have that w ∈ Fv1 , which
implies deg(v1) ≥ deg(w) and so deg(v2) ≤ 1. Hence [Fv2] =∑n

i=1 a
(2)
i xi+b

(2). (One can note that at least one of [∂wFv1]
or [Fv2] is constant). Thus we can prove the (correct, by
virtue of the assumption w 6= v) identity [∂wFv] = [∂wFv1] ·
[Fv2] with a Pc(F) proof of size O(s2) and depth O(log s).

Overall, Ψ0 will be the union of all the above proofs, so
that Ψ0 contains all equations (11), (12) (for all nodes v
satisfying (10)), and all equations (15) and (16) (for all nodes
v, w satisfying (13) and (14)). The proof sequence Ψ0 has
size λ(s, 0) = O(s4) and is and depth O(log s).

Induction step: We wish to construct the proof-sequence
Ψi+1.

Part (I).
Let v be any node in F such that

2i < deg(v) ≤ 2i+1.

Case 1: Assume that v = v1 + v2. We show how to con-
struct the proof of [Fv] = [Fv1] + [Fv2]. Let m = 2i. From
the definition of [·] we have:

[Fv] = [Fv1+v2] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂t(Fv1+v2)] . (17)

Since deg(v1) = deg(v2) = deg(v), we also have

[Fve] =
∑

t∈Bm(Fve)

[Ft1] · [Ft2] · [∂t(Fve)], for e ∈ {0, 1} .

(18)

If t ∈ Bm(Fv) then deg(t) > m = 2i. Therefore, for any
t ∈ Bm(Fv), since deg(v) ≤ 2i+1, we have deg(v)− deg(t) <
2i and 2 deg(t) > deg(v) and t 6= v (since t is a product
gate). Thus, by induction hypothesis, the proof-sequence
Ψi contains, for any t ∈ Bm(Fv), the equations

[∂t(Fv1+v2)] = [∂tFv1] + [∂tFv2].

Therefore, having Ψi as a premise, we can prove that (17)
equals:∑
t∈Bm(Fv)

[Ft1] · [Ft2] · ([∂tFv1] + [∂tFv2])

=
∑

t∈Bm(Fv)

[Ft1]·[Ft2]·[∂tFv1] +
∑

t∈Bm(Fv)

[Ft1] · [Ft2]·[∂tFv2].

(19)

If t ∈ Bm(Fv) and t 6∈ Fv1 then [∂tFv1] = 0. Similarly, if
t ∈ Bm(Fv) and t 6∈ Fv2 then [∂tFv2] = 0. Hence we can
prove∑

t∈Bm(Fv)

[∂tFve] =
∑

t∈Bm(Fve)

[∂tFve], for e = 1, 2. (20)

Thus, using (18) we have that (19) equals:∑
t∈Bm(Fv1

)

[Ft1] · [Ft2] · [∂tFv1] +
∑

t∈Bm(Fv2
)

[Ft1] · [Ft2]·[∂tFv2]

= [Fv1] + [Fv2].

(21)

The above proof of (21) from Ψi has size O(s2 ·m(s, d)) and
depth O(r(s, d)).
Case 2: Assume that v = v1 · v2. We wish to prove
[Fv] = [Fv1] · [Fv2]. Let m = 2i. We assume without loss of
generality that deg(v1) ≥ deg(v2). By the definition of [·],
we have:

[Fv] = [Fv1·v2] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv].

If v ∈ Bm(Fv), then Bm = {v} and we have [Fv] = [Fv1] ·
[Fv2] · [∂vFv]. Since [∂vFv] = 1, this gives [Fv] = [Fv1] · [Fv2],
and we are done.

Otherwise, assume v 6∈ Bm(Fv). Then m = 2i < deg(v1)
(since, if deg(v1) ≤ m, then also deg(v2) ≤ m and so by
definition v ∈ Bm(Fv)). Because, moreover, deg(v1) ≤ 2i+1,
we have

[Fv1] =
∑

t∈Bm(Fv1
)

[Ft1] · [Ft2] · [∂tFv1] . (22)

Since deg(v) ≤ 2i+1 and deg(t) > m = 2i, for any t ∈
Bm(Fv), we have

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v).

Since v 6= t, by induction hypothesis, Ψi contains, for any
t ∈ Bm(Fv), the equation:

[∂t(Fv1·v2)] = [∂tFv1] · [Fv2]. (23)

Using (23) for all t ∈ Bm(Fv), we can prove the following
with a Pc(F) proof of sizeO(s2·m(s, d)) and depthO(r(s, d)):∑
t∈Bm(Fv)

[Ft1]·[Ft2]·[∂tFv] =
∑

t∈Bm(Fv)

[Ft1]·[Ft2]· [∂t(Fv1·v2)]

=
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · ([∂tFv1] · [Fv2])

= [Fv2] ·
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1].

(24)

Since Bm(Fv1) ⊆ Bm(Fv), we can conclude as in (20) that∑
t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1] =
∑

t∈Bm(Fv1
)

[Ft1] · [Ft2] · [∂tFv1] .

Using (22), (24) equals [Fv2] · [Fv1]. The above proof-
sequence (using Ψi as a premise) has size O(s2 · m(s, d))
and depth O(r(s, d)).

We now append Ψi with all proof-sequences of [Fv] =
[Fv1]+[Fv2] for every v from Case 1, and all proof-sequences
of [Fv] = [Fv1] · [Fv2] for every v from Case 2. We obtain a
proof-sequence Ψ′i+1 of size

λ(s, i+ 1) ≤ O(s3 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)).
In Part (II), we extend Ψ′i+1 with more proof-sequences

to obtain the final Ψi+1.

Part (II).
Let v 6= w be a pair of nodes in F such that w ∈ Fv and

assume that

2i < deg(v)− deg(w) ≤ 2i+1 and 2 deg(w) > deg(v).

Let

m = 2i + deg(w).

Case 1: Suppose that v = v1 + v2. We need to prove

[∂wFv] = [∂wFv1] + [∂wFv2] (25)

based on Ψi as a premise. By construction of [∂wFv],

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2]

=
∑

t∈Bm(Fv)

[∂t(Fv1+v2)] · [∂wFt1] · [Ft2]. (26)

Since deg(v1) = deg(v2) = deg(v), we also have

[∂wFve] =
∑

t∈Bm(Fve)

[∂tFve] · [∂wFt1] · [Ft2], for e = 1, 2 .

(27)

Since m = 2i + deg(w), we have deg(t) > 2i + deg(w), for
any t ∈ Bm(Fv). Thus, by deg(v) − deg(w) ≤ 2i+1, we get
that for any t ∈ Bm(Fv):

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v), and

t 6= v (since t is a product gate).

Therefore, by induction hypothesis, for any t ∈ Bm(Fv), Ψi

contains the equation

[∂t(Fv1+v2)] = [∂tFv1] + [∂tFv2].

Thus, based on Ψi, we can prove that (26) equals:∑
t∈Bm(Fv)

([∂tFv1] + [∂tFv2])[∂wFt1][Ft2]

=
∑

t∈Bm(Fv)

[∂tFv1][∂wFt1][Ft2] +
∑

t∈Bm(Fv)

[∂tFv2][∂wFt1][Ft2].

(28)

As in (20), using (27) we can derive the following from (28):∑
t∈Bm(Fv1

)

[∂tFv1][∂wFt1][Ft2] +
∑

t∈Bm(Fv2)

[∂tFv2][∂wFt1][Ft2]

= [∂wFv1] + [∂wFv2].

The proof of (25) from Ψi shown above has size O(s2 ·
m(s, d)) and depth O(r(s, d)).
Case 2: Suppose that v = v1 · v2. We assume without loss
of generality that deg(v1) ≥ deg(v2) and show how to prove

[∂wFv] = [∂wFv1] · [Fv2]. (29)

By construction of [∂wFv]:

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2]

=
∑

t∈Bm(Fv)

[∂t(Fv1·v2)] · [∂wFt1] · [Ft2]. (30)

Similar to the previous case, for any t ∈ Bm(Fv) we have

deg(v)− deg(t) < 2i and 2 deg(t) > deg(v).

If v ∈ Bm(Fv) then Bm(Fv) = {v} and so (30) is simply
∂vFv · [∂wFv1] · [Fv2] = [∂wFv1] · [Fv2] as required. Other-
wise, assume that v 6∈ Bm(Fv). By induction hypothesis, Ψi

contains the following equation, for any t ∈ Bm(Fv):

[∂t(Fv1·v2)] = [∂tFv1] · [Fv2].

Using Ψi as a premise, we can then prove that (30) equals:∑
t∈Bm(Fv)

([∂tFv1] · [Fv2]) · [∂wFt1] · [Ft2] =

(∑
t∈Bm(Fv)

[∂tFv1] · [∂wFt1] · [Ft2]

)
· [Fv2]. (31)

As in (20), we have
∑

t∈Bm(Fv)[∂tFv1] · [∂wFt1] · [Ft2] =∑
t∈Bm(Fv1

)[∂tFv1] · [∂wFt1] · [Ft2]. Also, since v1 · v2 = v 6∈
Bm(Fv), we have deg(v1) > m = 2i + deg(w), and so

[∂wFv1] =
∑

t∈Bm(Fv1)

[∂tFv1] · [∂wFt1] · [Ft2] . (32)

Hence by (32), (31) equals [∂wFv1] · [Fv2].
The above proof of (29) from Ψi has size O(s2 ·m(s, d))

and depth O(r(s, d)).

We now append Ψ′i from Part (I) (which also contains Ψi)
with all proof-sequences of [∂wFv] = [∂wFv1] + [∂wFv2] in
Case 1 and all proof sequences [∂wFv] = [∂wFv1] · [Fv2] in
Case 2, above. We obtain the proof-sequence Ψi+1 of size

λ(s, i+ 1) ≤ O(s4 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)), as required.

5. PROOFS WITH DIVISION
In this section, we investigate proofs with divisions (as

defined in Section 2.3), and prove Theorem 9.
Let us first turn the reader’s attention to some peculiari-

ties of the system P−1
c :

• We must be careful not to divide by zero in P−1
c . Hence

P−1
c proofs are not closed under substitution. It may

happen that F (z) = G(z) has a P−1
c proof S, F (0) =

G(0) is defined, but substituting z by 0 throughout S
is not a correct proof.

• Whereas P−1
c is sound with respect to polynomial iden-

tities, it behaves erratically if one considers proofs from
assumptions. For example, P−1

c augmented with the
axiom x2 − x = 0 proves that 1 = 0.

• Prima facie, it is not clear whether a P−1
c proof of

equation F = G can be transformed to a proof of F =
G which contains only the variables contained in F and
G. See Remark 29.

In the sequel, we will consider substitution instances of
equations we prove in P−1

c . For instance, we will need to
substitute 0 for some variables in the matrix X, when prov-
ing equations involving the circuit DET(X), and we have to
guarantee that our proofs remain correct after such a sub-
stitution.

There are two general ways how to securely handle sub-
stitutions in P−1

c proofs. The first one is to substitute
only algebraically independent elements: replacing variables
z1, . . . , zk with circuits H1, . . . , Hk can never produce an un-
defined proof, if the circuits compute algebraically indepen-
dent rational functions. The second way is offered in Corol-
lary 33. This corollary allows one to construct a new proof
of F (0) = G(0) from the proof of F (z) = G(z). Note, how-
ever, that in Corollary 33 the new proof will be polynomial
only if the syntactic degree of F and G is polynomial.

Since the determinant circuit DET has an exponential
syntactic degree (see Section 7), the second approach to sub-
stitution is not suitable for the DET identities. The first
approach, which substitutes algebraically independent ele-
ments, often cannot cannot be used either, because we need
to substitute variables by field elements. Therefore we must
sometimes simply make sure that the specific substitutions
used do not make the proofs undefined. To this end, we use
the following terminology: let x = (x1, . . . , xk) be a list of
variables and U = (U1, . . . , Uk) a list of circuits with divi-
sions. We say that a circuit F (x) with divisions is defined
for x = U , if no divisions by zero occur in F (U); likewise,
we say that a P−1

c proof S is defined for x = U (or simply
defined, if the context is clear), if every circuit in S is defined
for x = U .

5.1 Eliminating division gates over large
enough fields

We first prove Theorem 9 under the assumption that the
underlying field F is large. To eliminate division gates from
proofs, we follow the construction of Strassen [16], in which
an inverse gate is replaced by a truncated power series. In
order to eliminate division gates over small fields, additional
work will be needed (see Section 6).

Let F be a circuit with divisions. We say that F is a
circuit with simple divisions, if for every inverse gate v−1

in F the circuit Fv does not contain inverse gates. A size
s circuit with division F can be converted to a size O(s)
circuit of the form F1 · F−1

2 , where F1, F2 do not contain
inverse gates, as follows.

For every node v introduce two nodes Den(v) and Num(v)
which will compute the numerator and denominator of the
rational function computed by v, respectively, as follows:

(i) If v is an input node of F , let Num(v) := v and
Den(v) = 1.

(ii) If v = u−1, let Num(v) := Den(u) and Den(v) :=
Num(u).

(iii) If v = u1 · u2, let Num(v) := Num(v1) · Num(v2) and
Den(v) := Den(v1) ·Den(v2).

(iv) If v = u1 + u2, let Num(v) := Num(u1) · Den(u2) +
Num(u2) ·Den(u1) and Den(v) := Den(u1) ·Den(u2).

Let Num(F) and Den(F) be the circuits with the out-
put node Num(w) and Den(w), respectively, where w is the
output node of F . The following lemma will be used in
Proposition 28:

Lemma 26. Let F be any field.

(i). If F is a size s circuit with division, then

F = Num(F) ·Den(F)−1

has a P−1
c (F) proof of size O(s). The proof is defined

whenever F is defined.

(ii). Let F,G be circuits with division. Assume that F =
G has a P−1

c (F) proof of size s. Then Num(F) ·
Den(F)−1 = Num(G) · Den(G)−1 has a P−1

c (F) proof
of size O(s) such that every circuit in the proof is a
circuit with simple divisions.

Proof. Part (i) is proved by straightforward induction
on the size of F and part (ii) by induction on the number of
proof lines. We omit the details. QED

Let k be a fixed natural number and define powk(1 − z)
to be the circuit

powk(1− z) := 1 + z + · · ·+ zk .

In other words, powk(1 − z) is the first k + 1 terms of the
power series expansion of 1/(1− z) at z = 0.

Let F be a division-free circuit and let a := F̂ (0). Assume
that a 6= 0, that is, the polynomial computed by F has a
nonzero constant term, and let Invk(F) denote the circuit

Invk(F) := a−1 · powk(a−1F)

= a−1 ·
(
1+(1−a−1F) +(1−a−1F)2 +. . .+(1− a−1F)k

)
.

Note that a−1 is a field element and hence Invk(F) is a
circuit without division. The following lemma shows that
Invk(F) can provably serve as the inverse polynomial of F
“up to the k power”:

Lemma 27. Let F be any field and let F be a size s circuit

without division such that F̂ (0) 6= 0. Then the following have
Pc(F) proofs of size s · poly(k):

(F · InvkF)(0) = 1 (33)

(F · InvkF)(i) = 0, for 1 ≤ i ≤ k . (34)

Proof. Let z abbreviate the circuit 1 − a−1F . Then
F = a(1− z) and Invk(F) = a−1(1 + z + z2 + · · ·+ zk). By
elementary rearrangement, we can prove

F · Invk(F) = (1− z)(1 + z + z2 + . . . zk) = 1− zk+1 .

By Lemma 15, (F · Invk(F))(0) = 1 − (zk+1)(0) and (F ·
Invk(F))(i) = (zk+1)(i), for i > 0. It is therefore sufficient

to prove for every i ≤ k, (zk+1)(i) = 0. This follows by

induction using Lemma 15 and the fact that z(0) = 0. QED

The dependency on the field comes from the following fact,
which follows from the Schwartz-Zippel lemma [9, 19]:

Fact 1. Let f1, . . . , fs ∈ F[X] be non-zero polynomials of
degree ≤ d, where X = {x1, . . . xn}. Assume that |F| > sd.
Then there exists ā ∈ Fn such that fi(ā) 6= 0 for every i ∈
{1, . . . , s}.

Proposition 28. There exists a polynomial p such that
the following holds. Let F,G be circuits without division
of syntactic degree at most d. Assume that F = G has a
P−1
c (F) proof with divisions of size at most s and suppose

that |F| > 2Ω(s). Then F = G has a Pc(F) proof of size
s · p(d).

Proof. Let S be a P−1
c (F) proof of F = G of size s.

By Lemma 26, we can assume that the proof contains only
simple divisions. Let C be the set of circuits H such that S
contains a circuit with a node u−1 such that u computes H.
Then |C| ≤ s and degH ≤ 2Ω(s) for every H ∈ C, since H
has size at most s. By the Fact above, there exists a point

b ∈ Fn such that Ĥ(b) 6= 0 for every H ∈ C, where n is the
number of variables in S.

Without loss of generality, we can assume that b =
〈0, . . . , 0〉. Let S′ be the sequence of equations obtained
by replacing every circuit (H)−1 in S by Invk(H). The se-
quence S′ does not contain divisions, but is not yet a correct
proof, since the translation F · Invk(F) = 1 of the axiom D
is not satisfied. However, we claim that for every equation

F1 = F2 in S′ and every k ≤ d, F
(k)
1 = G

(k)
1 has a Pc proof

of size s · p(d) for a suitable polynomial p. The proof is
constructed by induction on the length of S′, as in Propo-
sition 7. The case of the axiom D follows from Lemma 27:
(F · Invk(F))(0) = 1 = 1(0) and (F · Invk(F))(j) = 0 = 1(j),

if j > 0. Consequently, we obtain proofs of F (k) = G(k),
for every k ≤ d. By Lemma 16, we have Pc(F) proofs of

F =
∑

k≤d F
(k), G =

∑
k≤dG

(k). This gives Pc(F) proofs of
F = G with the correct size. QED

Another application of Schwartz-Zippel lemma is the fol-
lowing:

Remark 29. Let F be an arbitrary field and assume that
F = G has a P−1

c (F) proof of size s. Then there exists a
P−1
c (F) proof of F = G of size O(s2) which contains only

the variables appearing in F or G.

Proof. Let S be a proof of F = G of size s which contains
variables z1, . . . , zm not appearing in F or G. Assume that
F or G actually contain at least one variable x, otherwise
the statement is clear. It is sufficient to find a substitution
z1 = H1, . . . , zm = Hm for which the proof S is defined
and H1, . . . , Hm are circuits of size O(s) in the variable x
only. We will choose the substitution from the set M =
{x1, x2, x3 . . . , x2cs

}, where c is a sufficiently large constant.
Note that xp can be computed by a circuit of size log2 p +
2, and so every circuit in M has size O(s). That such a
substitution exists can be shown as in Proposition 28, when
we consider M as a subset of the field of rational functions.

QED

5.2 Taylor series
For a later application, we need to introduce the basic

notion of a power series. Let F = F (x, z) be a circuit with
division. We will define ∆zk (F) as a circuit in the variables
x, computing the coefficient of zk in F , when F is written
as a power series at z = 0. This is done as follows:
Case 1: Assume first that no division gates in F contain
the variable z. Then we define ∆zk (F) by the following rules

(the definition is similar to that of F (k) in Section 3, and so
we will be less formal here):

(i) ∆z(z) := 1 and ∆zk (z) := 0, if k > 1.

(ii) If F does not contain z, then ∆z0(F) := F and
∆zk (F) := 0, if k > 0.

(iii) ∆zk (F +G) = ∆zk (F) + ∆zk (G).

(iv) ∆zk (F ·G) =
∑k

i=0 ∆zi(F) ·∆zk−i(G).

Case 2: Assume now that some division gate in F contains
z. We let:

F0 := ((Den(F))(z/0)] ,

where, given a circuit G, G] is the non-redundant version
of G (see definition in Section 3) and G(z/0) is obtained by
substituting in G all occurrences of z by the constant 0.

In case F̂0 6= 0, we define:

∆zk (F) := F−1
0 ·∆zk

(
Num(F) · powk

(
F−1

0 ·Den(F)
))
.

Note that z does not occur in any division gate inside
Num(F)·powk

(
F−1

0 ·Den(F)
)
, and so ∆zkF is well-defined.

We summarize the main properties of ∆zk as follows:

Proposition 30. (i). If F is a circuit without divi-
sions of syntactic degree ≤ d and size s then F =∑d

i=0 ∆zi(F) · zi has a Pc proof of size s · poly(d).

(ii). If F0, . . . , Fk are circuits with divisions not contain-

ing the variable z, then ∆zj (
∑k

i=0 Fiz
i) = Fj has a

polynomial size P−1
c proof, for every j ≤ k.

(iii). Assume that F,G are circuits with divisions such that
F = G has a P−1

c proof of size s which is defined for
z = 0. Then

∆zk (F) = ∆zk (G)

has a P−1
c proof of size s · poly(k).

The proofs are almost identical to those of Proposition 7 and
Proposition 28. We omit the details.

6. SIMULATING LARGE FIELDS IN
SMALL ONES

Recall the notation on matrices given in Section 1.1.
Mainly, matrices are understood as matrices whose entries
are circuits and operations on matrices are operations on
circuits.

Lemma 31. Let X,Y, Z be n×n matrices of distinct vari-
ables and In the identity matrix. Then the following identi-
ties have polynomial-size Pc(F) proofs:

X + Y = Y +X X + (Y + Z) =(X + Y) + Z
X · (Y + Z)=X · Y +X · Z (Y + Z)·X= Y ·X + Z ·X
X · (Y · Z) = (X · Y) · Z X · In = In ·X = X.

Similarly for non-square matrices of appropriate dimension.

Proof. Each of the equalities is a set of n2 correct equa-
tions with degree ≤ 3 and size O(n). Every such equation
has a Pc-proof of size O(n3). QED

Let F1 = GF (p) and F2 = GF (pn), where p is a prime
power. We will show how to simulate proofs in Pc(F2) by
proofs in Pc(F1). Recall that F2 can be represented by n×n
matrices with elements from F1, that is, there is an isomor-
phism θ between F2 and a subset of GLn(F1). We can also
assume that θ(a) = aIn if a ∈ F1 ⊆ F2. This allows one to
treat a polynomial f over F2 as a matrix of n2 polynomials
over F1. Similarly, we can define a translation of circuits: let
F be a circuit with coefficients from F2. Let F be an n× n
matrix of circuits {F ij}, i, j ∈ [n] with coefficients from F1,
defined as follows: for every gate u in F , introduce n2 gates
ū = {ūij}i,j∈[n], and let:

(i). If u ∈ F2 is a constant, let ū := θ(u).

(ii). If u is a variable, let ū := u · In.

(iii). If u = v + w, let ū := v̄ + w̄, and if u = v · w, let
ū := v̄ · w̄

Then F is the matrix computed by w̄ where w is the output
of F .

Here, v̄ + w̄, (v̄ · w̄) and u · In are understood as the
corresponding matrix operations on circuit nodes.

Lemma 32. Let F,G be circuits of size ≤ s with coeffi-
cients from F2. Then

F⊕G = F +G , F⊗G = F ·G , (35)

F ·G = G · F (36)

have Pc(F1) proofs of size s · poly(n)

Proof. Identities (35) follow from the definition of F by
means of axioms C1, C2.

Identity (36) follows by induction on the circuit sizes of F
and G. We first need to construct the proof of

z1 · z2 = z2 · z1 ,

where each z1, z2 is either a variable or an element of F2.
So assume that z1 is a variable. Then z1 = z1 · In. This
gives z1 · z2 = z1 · z2. But z2 is a matrix for which each
entry commutes with z1, which gives a proof of z1 · z2 =
z2 · z1 = z2 · z1. The case of z2 being a variable is similar.
If both z1, z2 ∈ F2, we are supposed to prove θ(z1) · θ(z2) =
θ(z2)·θ(z1). But this is a set of n2 true equations of size O(n)

which contain only elements of F1, and hence it has a proof
of size O(n3). In the inductive step, use (35) and Lemma
31 to construct proofs of (F1 + F2) ·G = G(F1 + F2) and of
(F1 · F2) ·G = G(F1 · F2) from the proofs of F1 ·G = G · F1

and F2 ·G = G · F2. QED

Proof Proof of Theorem 10. Let F,G be circuits
with coefficients from F2 such that F = G has a Pc(F2)
proof of size s. We wish to show that F = G have proofs
of size s · poly(n) in Pc(F1). This implies Theorem 10, for
if F,G contain only coefficients from F1 then F 11 = F and
G11 = G.

The proof is constructed by induction on the number of
lines. Axioms C1, C2 follow from equations (35) in Lemma
32, and A4 from equation (36). A9 is a set of n2 true con-
stant equations. The rest of the axioms are application of
Lemma 31. The rules R1, R2 are immediate, and R3, R4
are given by Lemma 32. QED

Proof of Theorem 9. Theorem 9 follows from Theo-
rem 10 and Proposition 28. QED

For a circuit with division F , define its syntactic degree
by

degF := deg(NumF) + deg(DenF).

Corollary 33. Let F be any field and let F , G, H be
circuits with divisions. Assume that deg(F) and deg(G) is
at most d and that H has size s1. Suppose that F = G
has a P−1

c (F) proof of size s2 and that F (z/H), G(z/H) are
defined. Then F (z/H) = G(z/H) has a P−1

c (F) proof of size
s1s2 · poly(d).

Proof. We aim to construct a proof of F = G of size
s2 ·poly(d) such that the proof is defined for z = H. We can
then substitute H for z throughout the proof to obtain a
proof of F (z/H) = G(z/H) of the required size. By Lemma
26, we have proofs of

F = Num(F)·Den(F)−1 G = Num(G)·Den(G)−1 . (37)

This and F = G gives a P−1
c (F) proof of

Num(F) ·Den(G) = Num(G) ·Den(F) ,

of size O(s2). The last equation does not contain division
gates, and so it has a Pc(F) proof of size s2 · poly(d) by
Theorem 9. This proof is defined for z = H because it does
not contain division gates. By Lemma 26, the proofs of (37)
are defined for z = H (because F (z/H) and G(z/H) are
defined by assumption). In particular, both Den(F)(z/H)
and Den(G)(z/H) are nonzero, and we have a proof of

Num(F) ·Den(F)−1 = Num(G) ·Den(G)−1

which is defined for z = H. Using (37) we obtain a proof of
F = G of size s2 · poly(d) which is defined for z = H. QED

7. COMPUTING THE DETERMINANT
We are now done proving the structural properties of Pc

and Pf and we proceed to construct proofs of the properties
of the determinant. We first compute the determinant as a
rational function.

7.1 The determinant as a rational function

The definition of X−1 and DET(X)

Let X = {xij}i,j∈[n] be a matrix consisting of n2 distinct

variables. Recursively, we define n × n matrix X−1 whose
entries are circuits with divisions.

(i). If n = 1, let X−1 := (x−1
11).

(ii). If n > 1, partition X as

X =

(
X1 vt1
v2 xnn

)
, (38)

where X1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)(n−1))
and v2 = (xn1, . . . , xn(n−1)). Assuming we have con-

structed X−1
1 , let

δ(X) := xnn − v2X
−1
1 vt1 . (39)

δ(X) computes a single non-zero rational function and
so δ(X)−1 is defined. Finally, let

X−1 := (40)(
X−1

1 (In−1+δ(X)−1vt1v2X
−1
1) −δ(X)−1X−1

1 vt1
−δ(X)−1v2X

−1
1 δ(X)−1

)
.

DET(X) is defined is follows.

(i). If n = 1, let DET(X) := x11.

(ii). If n > 1, partition X as in (38) and let δ(X) be as in
(39). Let

DET(X) :=DET(X1)·δ(X)=DET(X1)(xnn−v2X
−1
1 vt1).

The definition in (40) should be understood as a circuit
with n2 outputs which takes X−1

1 , v1, v2, xnn as inputs and
moreover, such that the inputs from X−1

1 occur exactly once
(so we slightly deviate from earlier notation). Altogether, we
obtain polynomial size circuits for X−1 and DET(X). The
fact that DET(X) indeed computes the determinant (as a
rational function) is a consequence Proposition 38 below,
where we show that P−1

c can prove the two identities which
characterize the determinant. That X−1 computes the ma-
trix inverse is proved in Proposition 34.

It should be emphasized that both X−1 and DET(X) are
circuits with divisions and hence not always defined when
substituting for X. Let A := {aij}i,j∈[n] be an n×n matrix
whose entries are circuits with division. We will say that A
is invertible if the circuit A−1 is defined—that is, when we
substitute the entries of A into X−1, the circuit does not use
divisions by zero. Note that A−1 may be undefined even if
A has inverse “in the real world”. For example, if

A =

(
0 1
1 0

)
then both A−1 and DET(A) are undefined, and so A is not
invertible in our sense. Moreover, note that DET(X) has an
exponential syntactic degree which, in view of Corollary 33,
further obscures substitution in P−1

c proofs.
On the other hand, let us state the basic cases when the

determinant and matrix inverse are defined.

(i). If A is invertible (meaning the circuit A−1 is defined)
then DET(A) is defined.

(ii). If the entries of A compute algebraically independent
rational functions then A−1 is defined.

(iii). If A is a triangular matrix with a11, . . . , ann on the
diagonal such that a−1

11 , . . . , a
−1
nn are defined then A is

invertible.

(iv). Setting A[k] := {aij}i,j∈[k], the matrix A is invertible if

and only if A[1], . . . , A[n−1] are invertible and δ(A)−1

is defined.

Properties of matrix inverse
Proposition 34. Let X = {xij}i,j∈[n] be a matrix with

n2 distinct variables. Then both

X ·X−1 = In and X−1 ·X = In

have a polynomial-size P−1
c proof. The proof is defined for

X = A, whenever A is invertible.

Proof. Let us construct the proofs of X · X−1 = In
and X−1 · X = In by induction on n. If n = 1, we have
x11 · x−1

11 = x−1
11 · x11 = 1 which is a P−1

c axiom. Otherwise
let n > 1 and X be as in (38). We want to construct a
polynomial size proof of X ·X−1 = In from the assumption
X1X

−1
1 = In−1. This implies that X · X−1 = In has a

polynomial size proof.
For brevity, let a := δ(X). Using some rearrangements,

and the definition of a, we have:

X ·X−1 =(
X1 vt1
v2 xnn

)
·
(
X−1

1 (In−1 +a−1vt1v2X
−1
1) −a−1X−1

1 vt1
−a−1v2X

−1
1 a−1

)

=

In−1 + a−1vt1v2X

−1
1 − −a−1vt1 + a−1vt1

a−1vt1v2X
−1
1

v2X
−1
1 + a−1(v2X

−1
1 vt1 a−1(−v2X

−1
1 vt1 + xnn)

−xnn)v2X
−1
1

=

(
In−1 0
v2X

−1
1 − a−1av2X

−1
1 a−1a

)
=

(
In−1 0
0 1

)
.

Here we use the fact that basic properties of matrix addition
and multiplication have feasible proofs (see Lemma 31).

The proof of X−1 ·X = In is constructed in a similar fash-
ion (where we use the assumption X−1

1 X1 = In−1 instead).
Moreover, if A is an n× n matrix such that A−1 is defined,
the proofs of A · A−1 = A−1 · A = In are defined. (This
is because they employ only the inverse gates appearing al-
ready in the definition of X−1.) QED

Corollary 35. The identity (XY)−1 = Y −1X−1 has a
polynomial-size proof in P−1

c . The proof is defined for X =
A, Y = B whenever A,B and AB are invertible.

Beware that invertibility of A and B does not guarantee
invertibility of AB.

Proof. Let Z := (XY)−1. Then (Z(XY))Y −1X−1 =
Y −1X−1. On the other hand, (Z(XY))Y −1X−1 =
Z(X(Y Y −1)X−1 = Z and so Z = Y −1X−1. QED

An application of the Corollary is the following techni-
cal observation. Let X be as in (38) and similarly Y =(
Y1 ut

1

u2 ynn

)
. Comparing the entries in the bottom right

corners of (XY)−1 and Y −1X−1, we obtain that

δ(Y)δ(X) = δ(XY)(1 + u2Y
−1
1 X−1

1 vt1) , (41)

has a polynomial size P−1
c proof (the proof is defined for

X,Y = A,B whenever A, B and AB are invertible).
It is often easier to argue about triangular matrices. We

summarize their useful properties in the following:

Proposition 36. (i). Let A,L,U be n×n matrices with
L lower triangular and U upper triangular. If A,L,U
are invertible then so are LA and AU .

(ii). Let X be a n × n matrix of distinct variables. Then
there exists a lower triangular matrix L(X) and an
upper triangular matrix U(X) such that X = L(X) ·
U(X) has a polynomial size P−1

c proof. The proof is
defined for X = A whenever A is invertible, and then
also L(A), U(A) are invertible.

Proof. Part (i) follows from the fact that (LA)[k] =
L[k]A[k] and δ((LA)[k]) = δ(L[k])δ(A[k]) for every k ∈
{1, . . . , n} (where A[k] is defined as {aij}i,j∈[k].)

In part (ii), the matrices L(X), U(X), as well as the P−1
c

proof, are constructed by induction on n. If n = 1, let
L(x11) = x11 and U(x11) = 1. If n > 1, write X as in (38).
Assuming we have X1 = L(X1)U(X1), we have(

X1 vt1
v2 xnn

)
=(

L(X1) 0
v2U(X1)−1 xnn − v2X

−1
1 vt1

)
·
(
U(X1) L(X1)−1vt1
0 1

)
.

Verifying that the proof is defined for an invertible A, and
that L(A), U(A) are invertible, is straightforward. QED

Properties of DET

We now want to prove Proposition 38 which is a P−1
c analogy

of Theorem 4. We first prove the following lemma.

Lemma 37. Let A be an invertible n × n matrix and let
v1, v2 be n×1 vectors such that A+ vt1v2 is invertible. Then

DET(A+ vt1v2) = DET(A)(1 + v2A
−1vt1) (42)

has a polynomial size P−1
c proof.

Proof. The proof is constructed by induction on n. If
n = 1, the identity is immediate. If n > 1, partition A and
A+ vt1v2 as in (38), i.e.,

A =

(
A1 wt

1

w2 ann

)
and

A+ vt1v2 =

(
A1 + ut

1u2 wt
1 + c2u

t
1

w2 + c1u2 ann + c1c2

)
,

where v1 = (u1, c1) and v2 = (u2, c2). We want to con-
struct a polynomial size proof of (42) from the assumption
DET(A1 + ut

1u2) = DET(A1)(1 + u2A
−1
1 ut

1). This implies
that (42) has a polynomial size proof.

By the definition of DET, we have

DET(A) = DET(A1)δ(A), and

DET(A+ vt1v2) = DET(A1 + ut
1u2)δ(A+ vt1v2) .

By the assumption, DET(A1 + ut
1u2) = DET(A1)(1 +

u2A
−1
1 ut

1) and so (42) is equivalent to

DET(A1)(1 + u2A
−1
1 ut

1)δ(A+ vt1v2)

= DET(A1)δ(A)(1 + v2A
−1vt1) .

Hence in order to prove (42), it is sufficient to prove

(1 + u2A
−1
1 ut

1)δ(A+ vt1v2) = δ(A)(1 + v2A
−1vt1) . (43)

In order to prove (43), we first prove its special case

(1 + ū2ū
t
1)δ(In + v̄t1v̄2) = (1 + v̄2v̄

t
1) . (44)

where v̄1 = (ū1, c̄1) and v̄2 = (ū2, c̄2) are vectors such that
In + v̄t1v̄2 is invertible. Let α := ū2ū

t
1. By the definition of δ

δ(In + v̄t1v̄2) = (1 + c̄1c̄2 − c̄1c̄2ū2(In−1 + ūt
1ū2)−1ūt

1)

and it is easy to verify that

(In−1 + ūt
1ū2)−1 = In−1 − (1 + α)−1ūt

1ū2 .

Hence we obtain

(1 + ū2ū
t
1)δ(In + v̄t1v̄2)

= (1 + α)(1 + c̄1c̄2 − c̄1c̄2ū2(In−1 − (1 + α)−1ūt
1ū2)ūt

1

= (1 + α)(1 + c̄1c̄2 − c̄1c̄2ū2ū
t
1 − c̄1c̄2(1 + α)−1(ū2ū

t
1)2)

= (1 + α)(1 + c̄1c̄2 − c̄1c̄2α− c̄1c2(1 + α)−1α2)

= 1 + c̄1c̄2 + α = 1 + v̄2v̄
t
1

which proves (44).
In order to conclude (43), let L := L(A) and U := U(A)

be the matrices from Proposition 36. That is, L and U is
an invertible lower resp. upper triangular matrix so that
A = LU , and hence also A−1 = U−1L−1, has a polynomial
size proof. Let

v̄t1 := L−1vt1 and v̄2 := v2U
−1 .

The definition guarantees that

ū2ū
t
1 = u2A

−1
1 ut

1 , v̄2v̄
t
1 = v2A

−1vt1 (45)

have polynomial size proof. Moreover, A + vt1v2 = L(In +
v̄t1v̄2)U , which also shows that In + v̄t1v̄2 is invertible. (41)
implies that δ(LB) = δ(L)δ(B) and δ(BU) = δ(B)δ(U) has
a polynomial proof (for any invertible B). Hence

δ(A+ vt1v2) = δ(L)δ(U)δ(In + v̄t1v̄2) = δ(A)δ(In + v̄t1v̄2) .

This and (45) gives (43) from (44). QED

Proposition 38. (i). Let U be an (upper or lower) tri-
angular matrix with u1, . . . un on the diagonal. If
u−1

1 , . . . , u−1
n are defined then

DET(U) = u1 · · ·un

has a polynomial-size P−1
c proof.

(ii). Let X and Y be n × n matrices, each consisting of
pairwise distinct variables. Then

DET(X · Y) = DET(X) ·DET(Y) (46)

has a polynomial-size P−1
c proof. The proof is defined

for X = A, Y = B provided7 A[k], B[k] and A[k]B[k]
are invertible for every k ∈ {1, . . . , n}.

Proof. Part (i) readily follows from the definition of
DET.
Part (ii) is proved by induction on n. If n = 1, it is imme-
diate. Assume that n > 1. Let

X =

(
X1 vt1
v2 xnn

)
, Y =

(
Y1 ut

1

u2 ynn

)
.

7A[k] is defined as {aij}i,j∈[k].

We want to construct a polynomial size proof of
DET(XY) = DET(X)DET(Y) from the assumption
DET(X1Y1) = DET(X1)DET(Y1). This implies that
DET(XY) = DET(X)DET(Y) has a polynomial size proof.

By the definition of DET, we have

DET(X) = DET(X1)δ(X) , DET(Y) = DET(Y1)δ(Y)

and DET(XY) = DET(X1Y1 + vt1u2)δ(XY) , and we are
supposed to prove:

DET(X1Y1 +vt1u2)δ(XY) = DET(X1)δ(X) ·DET(Y1)δ(Y) .
(47)

By the previous lemma, we have DET(X1Y1 + vt1u2) =
DET(X1Y1)(1 + u2(X1Y1)−1vt1). By the assumption
DET(X1Y1) = DET(X1)DET(Y1), this yields

DET(X1Y1+vt1u2) = DET(X1)DET(Y1)(1+u2Y
−1
1 X−1

1 vt1) .

Hence in order to prove (47), it is sufficient to prove

(1 + u2Y
−1
1 X−1

1 vt1)δ(XY) = δ(X)δ(Y) .

But this follows from (41).
On the inductive step, we have assumed invertibility of

X,Y , XY , X1, Y1 and X1Y1, as well as invertibility of
X1Y1 + vt1u2. The latter follows from invertibility of XY
since (X1Y1 + vt1u2)−1 is used to define XY −1. Since X1 =
X[n−1], Y1 = Y [n−1], the proof altogether assumes invert-
ibility of X[k], Y [k] and X[k]Y [k] for every k ∈ {1, . . . , n}.

QED

Let us explicitly state the important cases when the proof
of DET(AB) = DET(A)DET(B) is defined. This is so, if A
and B are invertible and if

(i). the entries of A,B compute algebraically independent
rational functions, or

(ii). A is lower triangular or B is upper triangular, or

(iii). the entries of A are field elements and the entries of B
are algebraically independent, or vice versa.

The following lemma shows that elementary Gaussian op-
erations are well-behaved with respect to DET.

Lemma 39. Let X = {xij}i,j∈[n] be an n × n matrix of
distinct variables. Then the following have polynomial-size
P−1
c proofs:

(i). DET(X) = −DET(X ′), where X ′ is a matrix obtained
from X by interchanging two rows or columns.

(ii). DET(X ′′) = uDET(X), where X ′′ is obtained by mul-
tiplying a row in X by u, such that u−1 is defined (and
similarly for a column).

(iii). DET(X) = DET(X ′′′), where X ′′′ is obtained by
adding a row to a different row in X (and similarly
for columns).

(iv). DET(X) = xnnDET(X1−x−1
nnv

t
1v2), where X1, v1 and

v2 are from the decomposition (38).

Proof. Items (ii) and (iii) follow from Proposition 38
and the fact that X ′′ = AX and X ′′′ = A′X, where A,A′

are suitable triangular matrices. We cannot infer (i) di-
rectly from Proposition 38, since X ′ = TX implies only
that T is a transposition matrix and hence not invertible
in our sense. However, we can write T = A1A2, where

A1, A2 are invertible with DET(A1)DET(A2) = −1: note

that

(
0 1
1 0

)
=

(
1 1
1 0

)(
1 0
−1 1

)
. Since X is a ma-

trix of distinct variables, the following is defined:

DET(A1A2X) = DET(A1)DET(A2X)

= DET(A1)DET(A2)DET(X) .

Part (iv) follows from Lemma 37. QED

7.2 The determinant as a polynomial
Note that we cannot yet apply Theorem 9 to obtain The-

orem 4, because DET itself contains division gates. For our
purpose it will suffice to compute the determinant by a cir-
cuit without division, denoted det(X), and construct a proof
of det(X) = DET(X) in P−1

c . In order to do that, we will
define det(X) as the nth term of the Taylor expansion of
DET(I + zX) at z = 0, as follows: using notation from
Section 5.2, let

det(X) := ∆zn (DET(I + zX)) . (48)

Let us note that

(i). det(X) indeed computes the determinant of X,

(ii). det(X) is a circuit without divisions of syntactic degree
n.

This is because every variable from X in the circuit DET(I+
zX) occurs in a product with z. Hence ∆zn(DET(I +
zX)) is the n-th homogeneous part of the determinant
of I + X - the determinant of X. By the definition of
∆zn , ∆zn(DET(I + zX)) contains exactly one inverse gate,
namely the inverse of Den(DET(I+zX)) at the point z = 0.
But a := (Den(DET(I + zX)))(z/0)] is a constant circuit
computing a non-zero field element, and we can identify a−1

with the field constant it computes.

Lemma 40. Let X be an n × n matrix of distinct vari-
ables. There exist circuits with divisions P0, . . . , Pn−1 not
containing the variable z, such that

DET(zIn +X) = zn + Pn−1z
n−1 + · · ·+ P0

has a polynomial-size P−1
c (F) proof. Moreover, this proof is

defined for z = 0.

Proof. Let F be a circuit in which z does not occur in
the scope of any inverse gate. Then, we define the z-degree
of F as the syntactic-degree of F considered as a circuit
computing a univariate polynomial in z (so that all other
variables are treated as constants).

By induction, we will construct matrices A1, . . . , An with
the following properties:

1. A1 = X + zIn,

2. Every Ak is an (n − k + 1) × (n − k + 1) matrix of the
form (

zk + f w
vt zIn−k +Q

)
where all the entries are circuits with division in which z
does not occur in the scope of any division gate, v, w are
1×(n−k) vectors and moreover: f as well as every entry
of w have z-degree less than k and v,Q do not contain
the variable z.

3. The identity DET(Ak) = DET(Ak+1) has a polynomial-
size proof.

4. The entries of Ak are algebraically independent (this is
to guarantee that divisions are defined).

Assume that Ak is given, and let us partition it as

Ak =

 zk + f1 w f2

ut
1 zIm +Q ut

2

a1 v z + a2

where m = (n − k − 1) and we allow the alternative that
m = 0. Only f1, w, f2 can depend on z and have z-degree
< k. By Lemma 39 part (iv), we can switch the first and
last column to obtain a P−1

c proof of

DET(Ak) = −DET

 f2 w zk + f1

ut
2 zIm +Q ut

1

z + a2 v a1

 .

By Lemma 39 part (iv), we have

DET(Ak) =

−a1DET

(
f2−a−1

1 (zk+f1)(z+a2) w−a−1
1 (zk+f1)v

ut
2−a−1

1 ut
1(z+a2) zIm+Q−a−1

1 ut
1v

)

= DET

 (zk+f1)(z+a2)−a1f2 a1w−(zk+f1)v
ut

2− a−1
1 ut

1(z+a2) zIm+Q− a−1
1 ut

1v

 .

We can write (zk + f)(z + a2) = zk+1 + (fz + a2z
k + fa2),

where the z-degree of (fz + a2z
k + fa2) as well as of every

entry of a1w − (zk + f1)v is at most k. Hence the matrix
is of the right form, apart from the occurrence of zut

1 in
the first column. This can be remedied by multiplying by(

1 0
a−1

1 ut
1 Im

)
from the right to obtain Ak+1 of the re-

quired form.
This indicates that, given a circuit computing Ak, we can

compute Ak+1 using polynomially many additional gates.
Altogether, every Ak has a polynomial size circuit. The
proof of DET(Ak) = DET(Ak+1) has a polynomial num-
ber of lines and, as it involves polynomial size circuits, also
polynomial size.

Finally, we obtain a polynomial size proof of DET(An) =
DET(A1) = zn + f , where f is a circuit with z-degree < n
in which z is not in the scope of any division gate. Writing
f as

∑n−1
i=0 Piz

i concludes the lemma. QED

Proposition 41. (i). If U is a triangular matrix with
u1, . . . , un on the diagonal then det(U) = u1 · · ·un has
a polynomial size P−1

c proof.

(ii). Let X be an n × n matrix of distinct variables. Then
DET(X) = det(X) has a polynomial-size P−1

c proof.

Proof. Part (i) follows from Proposition 38. For we have
DET(In + zU) = (1 + zu1) · · · (1 + zun), and the proof is
defined for z = 0. By Proposition 30, det(U) = ∆zn((1 +
zu1) · · · (1 + zun)) = u1 · · ·un has a polynomial size P−1

c

proof.
(ii) follows from the previous lemma. We obtain

polynomial-size P−1
c proof of the following substitution in-

stance:

DET(zIn +X−1) = zn +Qn−1z
n−1 + · · ·+Q0, (49)

where the Qi’s are circuits with divisions which do not con-
tain the variable z and the proof is defined for z = 0.

By Proposition 38 we have a polynomial-size P−1
c proof of

DET(In + zX) = DET(zIn +X−1) ·DET(X) .

The proof is defined for z = 0 (as is witnessed by letting
X := In). From equation (49) we get a polynomial-size
proof of

DET(In + zX) = znDET(X) + zn−1Q′n−1 + · · ·+Q′0,

where Q′n−1, . . . , Q
′
0 do not contain z. The proof is defined

for z = 0 and so Proposition 30gives a polynomial-size P−1
c

proof of

∆zn(DET(In + zX)) =

∆zn(znDET(X) + zn−1Q′n−1 + · · ·+Q′0).

But by the definition of det(X), ∆zn(DET(I + zX)) is
det(X) and by the definition of ∆zn , ∆zn(znDET(X) +
zn−1Q′n−1 + · · ·+Q′0) is DET(X), and we are done. QED

8. CONCLUDING THE MAIN THEOREM
We can now finally prove Theorem 4 (Main Theorem),

which we rephrase as follows:

Proposition 42 (Theorem 4, rephrased). Let
X,Y, Z be n×n matrices such that X,Y consist of different
variables and Z is a triangular matrix with z11, . . . , znn on
the diagonal. Then there exist an arithmetic circuit detc
and a formula detf such that:

(i). The identity detc(XY) = detc(X) · detc(Y) and
detc(Z) = z11 · · · znn have polynomial-size O(log2 n)
depth proofs in Pc.

(ii). The identity detf (XY) = detf (X) · detf (Y) and

detf (Z) = z11 · · · znn have Pf proofs of size nO(log n).

Proof. Let det(X) = ∆znDET(I + zX) be the circuit
defined in (48). Lemma 41 part (ii) and Proposition 38
imply that the equations

det(XY) = det(X) · det(Y) and det(Z) = z11 · · · znn

(50)
have polynomial-size P−1

c proofs. By definition, the syntac-
tic degree of det(X) is at most n. Hence, by Theorem 9 the
identities in (50) have polynomial-size Pc proofs. This al-
most concludes part (i), except for the bound on the depth.
To bound the depth, let

detc(X) := [det(X)],

where [F] is the balancing operator as defined in Sec-
tion 4. Thus, Theorem 5 implies that [det(XY)] =
[det(X) · det(Y)] and [det(Z)] = [z11 · · · znn] have Pc proofs
of polynomial-size and depthO(log2 n). By means of Lemma
20, we have such proofs also for

[det(X) · det(Y)] = [det(X)] · [det(Y)] = detc(X) · detc(Y)

and [det(Z)] = z11 · · · znn. Hence it is sufficient to construct
(polynomial-size and O(log2 n) depth proofs) of

[det(XY)] = detc(XY) and [det(Z)] = detc(Z)

(note that defining detc(X) as [det(X)] does not imply that
[det(XY)] = detc(XY)). This follows from the following
more general claim:

Claim 43. Let F (x1/g1, . . . , xn/gn) be a circuit of size s
and syntactic degree d. Then

[F (x1/g1,. . ., xn/gn)]=[F (x1,. . . , xn)] (x1/ [g1] , . . . , xn/ [gn])

has a Pc proof of size poly(n, d) and depth O(log d log s +
log2 d).

Proof. This follows by induction using Lemma 20. We
omit the details. QED

To prove part (ii), recall the definition of F • from Remark
3. Let detf (X) := (detc(X))•. Then the statement follows
from part (i) and Claim 24 of the proof of Theorem 23. QED

We should note that in the Pc-proof of the equation
det(XY) = det(X) · det(Y) no divisions occur and so it
is defined for any substitution. In particular,

det(AX) = det(A) · det(X) = adet(X)

has a short Pc proof for any matrix A of field elements whose
determinant is a ∈ F. Similarly, the elementary Gaussian
operations stated in Lemma 39 carry over to polynomial-
size Pc proofs of the corresponding properties of det.

9. APPLICATIONS
In this section, we prove Propositions 11 and 12. First, one

should show that the cofactor expansion of the determinant
has short proofs. For an n × n matrix X and i, j ∈ [n],
let Xi,j denote the (n − 1) × (n − 1)-matrix obtained by
removing the ith row and jth column from X. Let Adj(X)
be the n×n matrix whose (i, j)-th entry is (−1)i+jdetc(Xj,i)
(where detc is the circuit from Proposition 42).

Proposition 44 (Cofactor expansion). Let X =
{xij}i,j∈[n] be an n × n matrix. Then the following iden-

tities have polynomial-size O(log2 n)-depth Pc proofs:

(i) detc(X) =
∑n

j=1(−1)i+jxijdetc(Xi,j), for any i ∈ [n];

(ii) X ·Adj(X) = Adj(X) ·X = detc(X) · I.

The proof of this proposition appears in the full version
of this article.

Proposition 45 (Proposition 12 restated). The
identities Y X = In have polynomial-size and O(log2 n)-
depth Pc proofs from the equations XY = In. In the case of
Pf , the proofs have quasipolynomial-size.

Proof. Note that we are dealing with a Pc proof from
assumptions, and hence we are not allowed to use divi-
sion gates. The proof is constructed as follows. Assume
XY = In. By Proposition 42, this gives detc(X)detc(Y) =
1. By Proposition 44, we can multiply from left both sides
of XY = In by Adj(X), to obtain detc(X)Y = Adj(X).
Hence,

detc(X)Y X = Adj(X)X = detc(X)In,

and so

detc(Y)detc(X)Y X = detc(Y)detc(X)In,

which, using detc(X)detc(Y) = 1 gives Y X = In. The
Pf proof is identical, except that the steps involving the
determinant require a quasipolynomial size. QED

Proof of Proposition 11. The proof proceeds via a
simulation of the construction in [17]. Due to lack of space,
we refer the reader to the full version of this article for more
details. QED

10. REFERENCES
[1] Paul Beame and Toniann Pitassi. Propositional proof

complexity: past, present, and future. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS, (65):66–89, 1998.

[2] Stuart J. Berkowitz. On computing the determinant in
small parallel time using a small number of processors.
Inf. Process. Lett., 18:147–150, 1984.

[3] Maria Luisa Bonet, Samuel R. Buss, and Toniann
Pitassi. Are there hard examples for Frege systems? In
Feasible mathematics, II, volume 13 of Progr. Comput.
Sci. Appl. Logic, pages 30–56. Birkhäuser, 1995.

[4] Pavel Hrubeš and Iddo Tzameret. The proof
complexity of polynomial identities. In Proceedings of
the 24th IEEE Conference on Computational
Complexity, pages 41–51, 2009.

[5] Laurent Hyafil. On the parallel evaluation of
multivariate polynomials. SIAM J. Comput.,
8(2):120–123, 1979.

[6] Emil Jeřábek. Dual weak pigeonhole principle,
Boolean complexity, and derandomization. Ann. Pure
Appl. Logic, 129(1-3):1–37, 2004.

[7] Jan Kraj́ıček. Bounded arithmetic, propositional logic,
and complexity theory, volume 60 of Encyclopedia of
Mathematics and its Applications. Cambridge, 1995.

[8] Ran Raz and Amir Yehudayoff. Balancing
syntactically multilinear arithmetic circuits. Comput.
Complexity, 17:515–535, 2008.

[9] Jacob T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. Journal of the
ACM, 27(4):701–717, 1980.

[10] Nathan Segerlind. The complexity of propositional
proofs. Bull. Symbolic Logic, 13(4):417–481, 2007.

[11] Amir Shpilka and Amir Yehudayoff. Arithmetic
circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical
Computer Science, 5(3-4):207–388, 2010.

[12] Michael Soltys. The complexity of derivations of
matrix identities. PhD thesis, University of Toronto,
2001.

[13] Michael Soltys. Feasible proofs of matrix properties
with csanky’s algorithm. In 19th International
Workshop on Comp. Sci. Log., pages 493–508, 2005.

[14] Michael Soltys and Stephen Cook. The proof
complexity of linear algebra. Ann. Pure Appl. Logic,
130(1-3):277–323, 2004.

[15] Michael Soltys and Alasdair Urquhart. Matrix
identities and the pigeonhole principle. Arch. Math.
Logic, 43(3):351–357, 2004.

[16] Volker Strassen. Vermeidung von divisionen. J. Reine
Angew. Math., 264:182–202, 1973. (in German).

[17] Leslie G. Valiant. Completeness classes in algebra. In
Proceedings of the 11th Annual ACM Symposium on
the Theory of Computing, pages 249–261. ACM, 1979.

[18] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and
Charles Rackoff. Fast parallel computation of
polynomials using few processors. SIAM J. Comput.,
12(4):641–644, 1983.

[19] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In Proceedings of the International
Symposiumon on Symbolic and Algebraic
Computation, pages 216–226. Springer-Verlag, 1979.

