64 research outputs found

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F′(un;un+1−un)=g−F(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors

    Get PDF
    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al

    Transcriptome of Aphanomyces euteiches: New Oomycete Putative Pathogenicity Factors and Metabolic Pathways

    Get PDF
    Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs) and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids

    Clinical Status of L-Asparaginase and Side Effects

    No full text

    Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat

    Get PDF
    The administration of noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine and ketamine has been shown to increase the extracellular concentration of glutamate and serotonin (5-HT) in the medial prefrontal cortex (mPFC). In the present work, we used in vivo microdialysis to examine the effects of the more potent noncompetitive NMDA receptor antagonist, MK-801, on the efflux of glutamate and 5-HT in the mPFC, and whether the MK-801-induced changes in the cortical efflux of both transmitters could be blocked by clozapine and haloperidol given systemically or intra-mPFC. The systemic, but not the local administration of MK-801, induced an increased efflux of 5-HT and glutamate, which suggests that the NMDA receptors responsible for these effects are located outside the mPFC, possibly in GABAergic neurons that tonically inhibit glutamatergic inputs to the mPFC. The MK-801-induced increases of extracellular glutamate and 5-HT were dependent on nerve impulse and the activation of mPFC AMPA/kainate receptors as they were blocked by tetrodotoxin and NBQX, respectively. Clozapine and haloperidol blocked the MK-801-induced increase in glutamate, whereas only clozapine was able to block the increased efflux of 5-HT. The local effects of clozapine and haloperidol paralleled those observed after systemic administration, which emphasizes the relevance of the mPFC as a site of action of these antipsychotic drugs in offsetting the neurochemical effects of MK-801. The ability of clozapine to block excessive cortical 5-HT efflux elicited by MK-801 might be related to the superior efficacy of this drug in treating negative/cognitive symptoms of schizophrenia.This work was supported by the Spanish Ministry of Education and Science Grants SAF 2004-05525 and SAF 2003-04930 and by the Generalitat de Catalunya (SGR2005/00758 and SGR2005/00826). XL-G, ZB, and MA-B were recipients of predoctoral fellowships from the Consejo Superior de Investigaciones Científicas (CSIC), Spanish Ministry of Education and Science, and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), respectively.Peer reviewe
    • …
    corecore