29 research outputs found

    Experience of parents who have suffered a perinatal death in two Spanish hospitals: a qualitative study

    Get PDF
    Background: Perinatal grief is a process that affects families in biological, psychological, social and spiritual terms. It is estimated that every year there are 2.7 million perinatal deaths worldwide and 4.43 deaths for every 1000 births in Spain. The aim of this study is to describe and understand the experiences and perceptions of parents who have suffered a perinatal death. Methods: A qualitative study based on Gadamer’s hermeneutic phenomenology. The study was conducted in two hospitals in the South of Spain. Thirteen mothers and eight fathers who had suffered a perinatal death in the 5 years prior to the study participated in this study. In-depth interviews were carried out for data collection. Inductive analysis was used to find themes based on the data. Results: Eight sub-themes emerged, and they were grouped into three main themes: ‘Perceiving the threat and anticipating the baby’s death: “Something is going wrong in my pregnancy”’; ‘Emotional outpouring: the shock of losing a baby and the pain of giving birth to a stillborn baby’; “We have had a baby”: The need to give an identity to the baby and legitimise grief’. Conclusion: The grief suffered after a perinatal death begins with the anticipation of the death, which relates to the mother’s medical history, symptoms and premonitions. The confirmation of the death leads to emotional shock, characterised by pain and suffering. The chance to take part in mourning rituals and give the baby the identity of a deceased baby may help in the grieving and bereavement process. Having empathy for the parents and notifying them of the death straightaway can help ease the pain. Midwives can help in the grieving process by facilitating the farewell rituals, accompanying the family, helping in honouring the memory of the baby, and supporting parents in giving the deceased infant an identity that makes them a family member

    Cation-pi interactions: A theoretical investigation of the interaction of metallic and organic cations with alkenes, arenes, and heteroarenes

    No full text
    The nature of the cation-pi interaction has been examined by carrying out high level ab initio calculations of both metallic (Li+, Na+, K+, and Ag+) and organic (NH4+, C(NH2)(3)(+), and N(CH3)(4)(+)) cations with different classes of pi systems, viz. alkenes (ethene), arenes (benzene), and heteroarenes (pyrrole). The calculations, which include a rigorous decomposition of the interaction energies, indicate that the interaction of these pi systems with the metal cations is characterized by contributions from both electrostatic and induction energies, with the contribution of the latter being dominant. Though the contributions of dispersion energies are negligible in the cation-pi complexes involving Li+ and Na+, they assume significant proportions in the complexes involving K+ and Ag+. In the pi complexes of the organic cations, the repulsive exchange contributions are much larger than the attractive electrostatic contributions in the pi complexes of organic cations, and thus, the contributions of both induction and dispersion energies are important. While inclusion of electron correlation is essential in obtaining accurate estimates of the dispersion energy, it also magnifies the contribution of the induction energies in the pi complexes of the organic cations. This results in significant consequences in the evaluation of geometries and energies of these cation-pi complexes. The major difference between the cation-pi and cation-H2O complexes stems from the differences in the relative contributions of electrostatic and induction energies, a foreknowledge of which is vital in the design of ion-selective ionophores and receptors. The blue shift in the highly IR active out-of-plane CH bending mode of the pi systems in these complexes is representative of the strength of the cation-g interaction.X11211204sciescopu

    Structures, energetics, and spectra of aqua-cesium (I) complexes: An ab initio and experimental study

    No full text
    The design of cesium-selective ionophores must include the nature of cesium-water interactions. The authors have carried out extensive ab initio and density functional theory calculations of hydrated cesium cations to obtain reasonably accurate energetics, thermodynamic quantities, and IR spectra. An extensive search was made to find the most stable structures. Since water center dot water interactions are important in the aqua-Cs+ clusters, the authors investigated the vibrational frequency shifts as a function of the number of water molecules and the frequency characteristics with and without the presence of outer-shell water molecules. The predicted vibrational frequencies were then compared with the infrared photodissociation spectra of argon-tagged hydrated cesium cluster ions. This comparison allowed the identification of specific hydrogen-bonding structures present in the experimental spectra. (c) 2007 American Institute of Physics.open114549sciescopu

    Bone Marrow Stem/Progenitor Cells Attenuate the Inflammatory Milieu Following Substitution Urethroplasty

    No full text
    Substitution urethroplasty for the treatment of male stricture disease is often accompanied by subsequent tissue fibrosis and secondary stricture formation. Patients with pre-existing morbidities are often at increased risk of urethral stricture recurrence brought upon in-part by delayed vascularization accompanied by overactive inflammatory responses following surgery. Within the context of this study, we demonstrate the functional utility of a cell/scaffold composite graft comprised of human bone marrow-derived mesenchymal stem cells (MSC) combined with CD34+ hematopoietic stem/progenitor cells (HSPC) to modulate inflammation and wound healing in a rodent model of substitution urethroplasty. Composite grafts demonstrated potent anti-inflammatory effects with regards to tissue macrophage and neutrophil density following urethral tissue analyses. This was accompanied by a significant reduction in pro-inflammatory cytokines TNFα and IL-1β and further resulted in an earlier transition to tissue remodeling and maturation with a shift in collagen type III to I. Grafted animals demonstrated a progressive maturation and increase in vessel size compared to control animals. Overall, MSC/CD34+ HSPC composite grafts reduce inflammation, enhance an earlier transition to wound remodeling and maturation concurrently increasing neovascularization in the periurethral tissue. We demonstrate the feasibility and efficacy of a stem cell-seeded synthetic graft in a rodent substitution urethroplasty model
    corecore