140 research outputs found
Implementation of a Toffoli Gate with Superconducting Circuits
The quantum Toffoli gate allows universal reversible classical computation.
It is also an important primitive in many quantum circuits and quantum error
correction schemes. Here we demonstrate the realization of a Toffoli gate with
three superconducting transmon qubits coupled to a microwave resonator. By
exploiting the third energy level of the transmon qubit, the number of
elementary gates needed for the implementation of the Toffoli gate, as well as
the total gate time can be reduced significantly in comparison to theoretical
proposals using two-level systems only. We characterize the performance of the
gate by full process tomography and Monte Carlo process certification. The gate
fidelity is found to be %.Comment: 4 pages, 5figure
Improving data availability for brain image biobanking in healthy subjects: practice-based suggestions from an international multidisciplinary working group
International audienceBrain imaging is now ubiquitous in clinical practice and research. The case for bringing together large amounts of image data from well-characterised healthy subjects and those with a range of common brain diseases across the life course is now compelling. This report follows a meeting of international experts from multiple disciplines, all interested in brain image biobanking. The meeting included neuroimaging experts (clinical and non-clinical), computer scientists, epidemiologists, clinicians, ethicists, and lawyers involved in creating brain image banks. The meeting followed a structured format to discuss current and emerging brain image banks; applications such as atlases; conceptual and statistical problems (e.g. defining 'normality'); legal, ethical and technological issues (e.g. consents, potential for data linkage, data security, harmonisation, data storage and enabling of research data sharing). We summarise the lessons learned from the experiences of a wide range of individual image banks, and provide practical recommendations to enhance creation, use and reuse of neuroimaging data. Our aim is to maximise the benefit of the image data, provided voluntarily by research participants and funded by many organisations, for human health. Our ultimate vision is of a federated network of brain image biobanks accessible for large studies of brain structure and function
Dietary intake and stress fractures among elite male combat recruits
<p>Abstract</p> <p>Background</p> <p>Appropriate and sufficient dietary intake is one of the main requirements for maintaining fitness and health. Inadequate energy intake may have a negative impact on physical performance which may result in injuries among physically active populations. The purpose of this research was to evaluate a possible relationship between dietary intake and stress fracture occurrence among combat recruits during basic training (BT).</p> <p>Methods</p> <p>Data was collected from 74 combat recruits (18.2 ± 0.6 yrs) in the Israeli Defense Forces. Data analyses included changes in anthropometric measures, dietary intake, blood iron and calcium levels. Measurements were taken on entry to 4-month BT and at the end of BT. The occurrence of stress reaction injury was followed prospectively during the entire 6-month training period.</p> <p>Results</p> <p>Twelve recruits were diagnosed with stress fracture in the tibia or femur (SF group). Sixty two recruits completed BT without stress fractures (NSF). Calcium and vitamin D intakes reported on induction day were lower in the SF group compared to the NSF group-38.9% for calcium (589 ± 92 and 964 ± 373 mg·d<sup>-1</sup>, respectively, <it>p </it>< 0.001), and-25.1% for vitamin D (117.9 ± 34.3 and 157.4 ± 93.3 IU·d<sup>-1</sup>, respectively, <it>p </it>< 0.001). During BT calcium and vitamin D intake continued to be at the same low values for the SF group but decreased for the NSF group and no significant differences were found between these two groups.</p> <p>Conclusions</p> <p>The development of stress fractures in young recruits during combat BT was associated with dietary deficiency before induction and during BT of mainly vitamin D and calcium. For the purpose of intervention, the fact that the main deficiency is before induction will need special consideration.</p
On-chip generation of high-dimensional entangled quantum states and their coherent control
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8, 9, 10, 11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode
Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane
Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane
Radiographic assessment of the femorotibial joint of the CCLT rabbit experimental model of osteoarthritis
<p>Abstract</p> <p>Background</p> <p>The purposes of the study were to determine the relevance and validity of in vivo non-invasive radiographic assessment of the CCLT (Cranial Cruciate Ligament Transection) rabbit model of osteoarthritis (OA) and to estimate the pertinence, reliability and reproducibility of a radiographic OA (ROA) grading scale and associated radiographic atlas.</p> <p>Methods</p> <p>In vivo non-invasive extended non weight-bearing radiography of the rabbit femorotibial joint was standardized. Two hundred and fifty radiographs from control and CCLT rabbits up to five months after surgery were reviewed by three readers. They subsequently constructed an original semi-quantitative grading scale as well as an illustrative atlas of individual ROA feature for the medial compartment. To measure agreements, five readers independently scored the same radiographic sample using this atlas and three of them performed a second reading. To evaluate the pertinence of the ROA grading scale, ROA results were compared with gross examination in forty operated and ten control rabbits.</p> <p>Results</p> <p>Radiographic osteophytes of medial femoral condyles and medial tibial condyles were scored on a four point scale and dichotomously for osteophytes of medial fabella. Medial joint space width was scored as normal, reduced or absent. Each ROA features was well correlated with gross examination (p < 0.001). ICCs of each ROA features demonstrated excellent agreement between readers and within reading. Global ROA score gave the highest ICCs value for between (ICC 0.93; CI 0.90-0.96) and within (ICC ranged from 0.94 to 0.96) observer agreements. Among all individual ROA features, medial joint space width scoring gave the highest overall reliability and reproducibility and was correlated with both meniscal and cartilage macroscopic lesions (r<sub>s </sub>= 0.68 and r<sub>s </sub>= 0.58, p < 0.001 respectively). Radiographic osteophytes of the medial femoral condyle gave the lowest agreements while being well correlated with the macroscopic osteophytes (r<sub>s </sub>= 0.64, p < 0.001).</p> <p>Conclusion</p> <p>Non-invasive in vivo radiography of the rabbit femorotibial joint is feasible, relevant and allows a reproducible grading of experimentally induced OA lesion. The radiographic grading scale and atlas presented could be used as a template for in vivo non invasive grading of ROA in preclinical studies and could allow future comparisons between studies.</p
SCOTTISH FREQUENCY OF THE COMMON G985 MUTATION IN THE MEDIUM-CHAIN ACYL-COA DEHYDROGENASE (MCAD) GENE AND THE ROLE OF MCAD DEFICIENCY IN SUDDEN-INFANT-DEATH-SYNDROME (SIDS)
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, is an autosomal recessive inborn error of metabolism associated with various clinical presentations, including sudden unexplained death in young children. We have determined the Scottish frequency of the common G985 mutation found in Caucasians and in samples from Scottish patients with sudden infant death syndrome (SIDS). The heterozygote frequency of the mutation was found to be 1 in 276 (95% confidence interval: 1/76-1/2279) in 552 healthy controls and 1 in 74 (95% confidence interval: 1/27-1/377) in 233 SIDS patients: a difference that was not statistically significant (Fisher's exact test; two-sided; p=0.316). None of the SIDS samples was found to be homozygous for the G985 mutation
Acute intermittent porphyria: alternative splicing of hydroxymethylbilane synthase mRNA excludes exons 3 and 12
The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited
Identification of two novel mutations in the hydroxymethylbilane synthase gene in three patients from two unrelated families with acute intermittent porphyria
We have screened the hydroxymethylbilane synthase cDNAs of 3 patients from 2 families suffering from acute intermittent porphyria (AIP) from Scotland and South Africa using heteroduplex and chemical cleavage of mismatch analyses, Direct sequencing was used to characterise the mutations, The two novel mutations identified were a missense mutation at nucleotide position 64 in exon 3 (R22C) and a single base-pair deletion in exon 15, These mutations are predicted to affect the normal function of the enzyme and, therefore, are expected to be the primary cause of disease in these patients
- …