4,850 research outputs found

    GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution

    Get PDF
    Generative Adversarial Networks (GAN) have limitations when the goal is to generate sequences of discrete elements. The reason for this is that samples from a distribution on discrete objects such as the multinomial are not differentiable with respect to the distribution parameters. This problem can be avoided by using the Gumbel-softmax distribution, which is a continuous approximation to a multinomial distribution parameterized in terms of the softmax function. In this work, we evaluate the performance of GANs based on recurrent neural networks with Gumbel-softmax output distributions in the task of generating sequences of discrete elements

    Stochastic expectation propagation

    Get PDF
    Expectation propagation (EP) is a deterministic approximation algorithm that is often used to perform approximate Bayesian parameter learning. EP approximates the full intractable posterior distribution through a set of local approximations that are iteratively refined for each datapoint. EP can offer analytic and computational advantages over other approximations, such as Variational Inference (VI), and is the method of choice for a number of models. The local nature of EP appears to make it an ideal candidate for performing Bayesian learning on large models in large-scale dataset settings. However, EP has a crucial limitation in this context: the number of approximating factors needs to increase with the number of data-points, N, which often entails a prohibitively large memory overhead. This paper presents an extension to EP, called stochastic expectation propagation (SEP), that maintains a global posterior approximation (like VI) but updates it in a local way (like EP). Experiments on a number of canonical learning problems using synthetic and real-world datasets indicate that SEP performs almost as well as full EP, but reduces the memory consumption by a factor of NN. SEP is therefore ideally suited to performing approximate Bayesian learning in the large model, large dataset setting

    Deep Gaussian processes for regression using approximate expectation propagation

    Get PDF
    Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of Gaussian processes (GPs) and are formally equivalent to neural networks with multiple, infinitely wide hidden layers. DGPs are nonparametric probabilistic models and as such are arguably more flexible, have a greater capacity to generalise, and provide better calibrated uncertainty estimates than alternative deep models. This paper develops a new approximate Bayesian learning scheme that enables DGPs to be applied to a range of medium to large scale regression problems for the first time. The new method uses an approximate Expectation Propagation procedure and a novel and efficient extension of the probabilistic backpropagation algorithm for learning. We evaluate the new method for non-linear regression on eleven real-world datasets, showing that it always outperforms GP regression and is almost always better than state-of-the-art deterministic and sampling-based approximate inference methods for Bayesian neural networks. As a by-product, this work provides a comprehensive analysis of six approximate Bayesian methods for training neural networks

    Variational implicit processes

    Get PDF
    We introduce the implicit processes (IPs), a stochastic process that places implicitly defined multivariate distributions over any finite collections of random variables. IPs are therefore highly flexible implicit priors over functions, with examples including data simulators, Bayesian neural networks and non-linear transformations of stochastic processes. A novel and efficient approximate inference algorithm for IPs, namely the variational implicit processes (VIPs), is derived using generalised wake-sleep updates. This method returns simple update equations and allows scalable hyper-parameter learning with stochastic optimization. Experiments show that VIPs return better uncertainty estimates and lower errors over existing inference methods for challenging models such as Bayesian neural networks, and Gaussian processes

    Minimal random code learning: Getting bits back from compressed model parameters

    Get PDF
    While deep neural networks are a highly successful model class, their large memory footprint puts considerable strain on energy consumption, communication bandwidth, and storage requirements. Consequently, model size reduction has become an utmost goal in deep learning. A typical approach is to train a set of deterministic weights, while applying certain techniques such as pruning and quantization, in order that the empirical weight distribution becomes amenable to Shannon-style coding schemes. However, as shown in this paper, relaxing weight determinism and using a full variational distribution over weights allows for more efficient coding schemes and consequently higher compression rates. In particular, following the classical bits-back argument, we encode the network weights using a random sample, requiring only a number of bits corresponding to the Kullback-Leibler divergence between the sampled variational distribution and the encoding distribution. By imposing a constraint on the Kullback-Leibler divergence, we are able to explicitly control the compression rate, while optimizing the expected loss on the training set. The employed encoding scheme can be shown to be close to the optimal information-theoretical lower bound, with respect to the employed variational family. Our method sets new state-of-the-art in neural network compression, as it strictly dominates previous approaches in a Pareto sense: On the benchmarks LeNet-5/MNIST and VGG-16/CIFAR-10, our approach yields the best test performance for a fixed memory budget, and vice versa, it achieves the highest compression rates for a fixed test performance
    • …
    corecore