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Abstract
We introduce the implicit processes (IPs), a
stochastic process that places implicitly defined
multivariate distributions over any finite collec-
tions of random variables. IPs are therefore highly
flexible implicit priors over functions, with ex-
amples including data simulators, Bayesian neu-
ral networks and non-linear transformations of
stochastic processes. A novel and efficient approx-
imate inference algorithm for IPs, namely the vari-
ational implicit processes (VIPs), is derived us-
ing generalised wake-sleep updates. This method
returns simple update equations and allows scal-
able hyper-parameter learning with stochastic op-
timization. Experiments show that VIPs return
better uncertainty estimates and lower errors over
existing inference methods for challenging mod-
els such as Bayesian neural networks, and Gaus-
sian processes.

1 Introduction
Probabilistic models with implicit distributions as core com-
ponents have recently attracted enormous interest in both
deep learning and the approximate Bayesian inference com-
munities. In contrast to prescribed probabilistic models
(Diggle & Gratton, 1984) that assign explicit densities to
possible outcomes of the model, implicit models implicitly
assign probability measures by the specification of the data
generating process. One of the most well known implicit
distributions is the generator of generative adversarial nets
(GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017) that
transforms isotropic noise into high dimensional data, using
neural networks. In approximate inference context, implicit
distributions have also been used as flexible approximate
posterior distributions (Rezende & Mohamed, 2015; Liu &
Feng, 2016; Tran et al., 2017; Li et al., 2017).
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This paper explores the extension of implicit models to
Bayesian modeling of random functions. Similar to the con-
struction of Gaussian processes (GPs), an implicit process
(IP) assigns implicit distributions over any finite collections
of random variables. Therefore IPs can be much more flexi-
ble than GPs when complicated models like neural networks
are used for the implicit distributions. With an IP as the
prior, we can directly perform (variational) posterior infer-
ence over functions in a non-parametric fashion. This is ben-
eficial for better-calibrated uncertainty estimates like GPs
(Bui et al., 2016a). It also avoids typical issues of inference
in parameter space, that is, symmetric modes in the poste-
rior distribution of Bayesian neural network weights.The
function-space inference for IPs is achieved by our pro-
posed variational implicit process (VIP) algorithm, which
addresses the intractability issues of implicit distributions.

Concretely, our contributions are threefold:

• We formalize implicit stochastic process priors over
functions, and prove its well-definedness in both finite
and infinite dimensional cases. By allowing the usage
of IPs with rich structures as priors ( e.g., data simu-
lators and Bayesian LSTMs), our approach provides
a unified and powerful Bayesian inference framework
for these important but challenging deep models.

• We derive a novel and efficient variational inference
framework that gives a closed-form approximation to
the IP posterior. It does not rely on e.g. density ra-
tio/gradient estimators in implicit variational inference
literature which can be inaccurate in high dimensions.
Our inference method is computationally cheap, and it
allows scalable hyper-parameter learning in IPs.

• We conduct extensive comparisons between IPs
trained with the proposed inference method, and
GPs/BNNs/Bayesian LSTMs trained with existing vari-
ational approaches. Our method consistently outper-
forms other methods, and achieves state-of-the-art re-
sults on a large scale Bayesian LSTM inference task.

2 Implicit Stochastic Processes
In this section, we generalize GPs to implicit stochastic pro-
cesses. Readers are referred to appendix A for a detailed
introduction, but briefly speaking, a GP defines the distribu-
tion of a random function f by placing a multivariate Gaus-
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sian distribution N (f ; m,Kff ) over any finite collection of
function values f = (f(x1), ..., f(xN ))> evaluated at any
given finite collection of input locations X = {xn}Nn=1.
Here (m)n = m(xn) and (Kff )n,n′ = K(xn,xn′), and
following Kolmogorov consistency theorem (Itô, 1984),
the mean and covariance functions m(·), K(·, ·) are shared
across all such finite collections. An alternative param-
eterization of GPs defines the sampling process as f ∼
N (f ; m,Kff ) ⇔ z ∼ N (z; 0, I), f = Bz + m, with
Kff = BB> the Cholesky decomposition of the covari-
ance matrix. Observing this, we propose a generalization
of the generative process by replacing the linear transform
of the latent variable z with a nonlinear one. This gives the
following formal definition of implicit stochastic process.
Definition 1 (noiseless implicit stochastic processes). An
implicit stochastic process (IP) is a collection of ran-
dom variables f(·), such that any finite collection f =
(f(x1), ..., f(xN ))> has joint distribution implicitly defined
by the following generative process:

z ∼ p(z), f(xn) = gθ(xn, z), ∀ xn ∈ X. (1)

A function distributed according to the above IP is denoted
as f(·) ∼ IP(gθ(·, ·), pz).

Note that z ∼ p(z) could be infinite dimensional (such as
samples from a Gaussian Process). Definition 1 is validated
by the following propositions.
Proposition 1 (Finite dimension case). Let z be a finite
dimensional vector. Then there exists a unique stochastic
process, such that any finite collection of random variables
has distribution implicitly defined by (1).
Proposition 2 (Infinite dimension case). Let
z(·) ∼ SP(0, C) be a centered continuous stochas-
tic process on L2(Rd) with covariance function
C(·, ·). Then the operator g(x, z) = Ok(z)(x) :=

h(
∫
x

∑M
l=0Kl(x,x

′)z(x′)dx′), 0 < M < +∞ defines
a stochastic process if Kl ∈ L2(Rd × Rd) , h is a
Borel measurable, bijective function in R and there exist
0 ≤ A < +∞ such that |h(x)| ≤ A|x| for ∀x ∈ R.

Proposition 1 is proved in appendix C.1 using the Kol-
mogorov extension theorem. Proposition 2 considers ran-
dom functions as the latent input z(·), and introduces a
specific form of the transformation/operator g, so that the
resulting collection of variables f(·) is still a valid stochastic
process (see appendix C.2 for a proof). Note this operator
can be recursively applied to build highly non-linear oper-
ators over functions (Guss, 2016; Williams, 1997; Stinch-
combe, 1999; Le Roux & Bengio, 2007; Globerson & Livni,
2016). These two propositions indicate that IPs form a rich
class of priors over functions. Indeed, we visualize some
examples of IPs in Figure 1 with discussions as follows:
Example 1 (Data simulators). Simulators, e.g. physics en-
gines and climate models, are omnipresent in science and
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Figure 1: Examples of IPs: (a) Neural samplers; (b) Warped GPs
(c) Bayesian neural networks; (d) Bayesian RNNs.

engineering. These models encode laws of physics in gθ(·, ·),
use z ∼ p(z) to explain the remaining randomness, and
evaluate the function at input locations x: f(x) = gθ(x, z).
We define the neural sampler as a specific instance of this
class. In this case gθ(·, ·) is a neural network with weights
θ, i.e., gθ(·, ·) = NNθ(·, ·), and p(z) = Uniform([−a, a]d).

Example 2 (Warped Gaussian Processes). Warped Gaus-
sian Processes (Snelson et al., 2004) is also an interesting
example of IPs. Let z(·) ∼ p(z) be a sample from a GP
prior, and gθ(x, z) is defined as gθ(x, z) = h(z(x)), where
h(·) is a one dimensional monotonic function.

Example 3 (Bayesian neural network). In a Bayesian neu-
ral network, the synaptic weights W with prior p(W ) play
the role of z in (1). A function is sampled by W ∼ p(W )
and then setting f(x) = gθ(x,W ) = NNW(x) for all
x ∈ X. In this case θ could be the hyper-parameters of the
prior p(W ) to be tuned.

Example 4 (Bayesian RNN). Similar to Example 3, a
Bayesian recurrent neural network (RNN) can be defined by
considering its weights as random variables, and taking as
function evaluation an output value generated by the RNN
after processing the last symbol of an input sequence.

3 Variational Implicit Processes
Consider the following regression model with an IP prior
over the regression function:

f(·) ∼ IP(gθ(·, ·), pz), y = f(x)+ε, ε ∼ N (0, σ2). (2)

Equation (2) defines an implicit model p(y, f |x), which
is intractable in most cases. Note that it is common to
add Gaussian noise ε to an implicit model, e.g. see the
noise smoothing trick used in GANs (Sønderby et al.,
2016; Salimans et al., 2016). Given an observed dataset
D = {X,y} and a set of test inputs X∗, Bayesian
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predictive inference computes the predictive distribu-
tion p(y∗|X∗,X,y, θ), which itself requires interpolat-
ing over posterior p(f |X,y, θ). Besides prediction, we
also want to learn the model parameters θ and σ by
maximizing the marginal likelihood: log p(y|X, θ) =
log
∫
f
p(y|f)p(f |X, θ)df , with f = f(X) being the evalua-

tion of f on the points in X. Unfortunately, both the prior
p(f |X, θ) and the posterior p(f |X,y, θ) are intractable as
the implicit process does not allow point-wise density eval-
uation, let alone the marginalization tasks. Therefore, to
address these, we must resort to approximate inference.

We propose a generalization of the wake-sleep algorithm
(Hinton et al., 1995) to handle both intractabilities. This
method returns (i) an approximate posterior distribution
q(f |X,y) which is later used for predictive inference, and
(ii) an approximation to the marginal likelihood p(y|X, θ)
for hyper-parameter optimization. We use the posterior of a
GP to approximate the posterior of the IP, i.e. q(f |X,y) =
qGP(f |X,y), since GP is one of the few existing tractable
distributions over functions. A high-level summary of our
algorithm is the following:

• Sleep phase: sample function values f and noisy
outputs y as indicated in (2). This dreamed data
is then used as the maximum-likelihood (ML) tar-
get to fit a GP. This is equivalent to minimizing
DKL[p(y, f |X, θ)||qGP(y, f |X)] for any possible X.

• Wake phase: The optimal GP posterior approximation
qGP(f |X,y) obtained in the sleep phase is used to
construct a variational approximation to log p(y|X, θ),
which is then optimized with respect to θ.

Our approach has two key advantages. First, the algorithm
has no explicit sleep phase computation, since the sleep
phase optimization has an analytic solution that can be
directly plugged into the wake-phase objective. Second,
the proposed wake phase update is highly scalable, as it is
equivalent to a Bayesian linear regression task with random
features sampled from the implicit process. With our wake-
sleep algorithm, the evaluation of the implicit prior density
is no longer an obstacle for approximate inference. We call
this inference framework the variational implicit process
(VIP). In the following sections we give specific details on
both the wake and sleep phases.

3.1 Sleep phase: GP posterior as variational
distribution

This section proposes an approximation to the IP poste-
rior p(f |X,y, θ). The naive variational inference (Jordan
et al., 1999) would require computing the joint distribu-
tion p(y, f |X, θ) which is intractable. However, sampling
from this joint distribution is straightforward. We leverage

this idea in the sleep phase of our wake-sleep algorithm to
approximate the joint distribution p(y, f |X, θ) instead.

Precisely, for any finite collection of variables f with their
input locations X, we approximate p(y, f |X, θ) with a sim-
pler distribution q(y, f |X) = q(y|f)q(f |X) instead. We
choose q(f |X) to be a GP with mean and covariance func-
tions m(·) and K(·, ·), respectively, and write the prior as
q(f |X) = qGP(f |X,m,K). The sleep-phase update mini-
mizes the following KL divergence:

q?GP = argmin
m,K

U(m,K), (3)

with U(m,K) = DKL[p(y, f |X, θ)||qGP(y, f |X,m,K)].

We further assume q(y|f) = p(y|f), which reduces
U(m,K) to DKL[p(f |X, θ)||qGP(f |X,m,K)]. In this case
the optimal m(·) and K(·, ·) are equal to the mean and co-
variance functions of the IP, respectively:

m?(x) = E[f(x)], (4)
K?(x1,x2) = E[(f(x1)−m?(x1))(f(x2)−m?(x2))].

Below we also write the optimal solution as q?GP(f |X, θ) =
qGP(f |X,m?,K?) to explicitly specify the dependency on
prior parameters θ 1. In practice, the mean and covariance
functions are estimated by by Monte Carlo, which leads
to maximum likelihood training (MLE) for the GP with
dreamed data from the IP. Assume S functions are drawn
from the IP: fθs (·) ∼ IP(gθ(·, ·), pz), s = 1, . . . , S. The
optimum of U(m,K) is then estimated by the MLE solution:

m?
MLE(x) =

1

S

∑
s

fθs (x), (5)

K?MLE(x1,x2) =
1

S

∑
s

∆s(x1)∆s(x2), (6)

∆s(x) = fθs (x)−m?
MLE(x).

To reduce computational costs, the number of dreamed sam-
ples S is often small. Therefore, we perform maximum a
posteriori instead of MLE, by putting an inverse Wishart
process prior (Shah et al., 2014) IWP(ν,Ψ) over the GP
covariance function K (Appendix C.3).

The original sleep phase algorithm in (Hinton et al., 1995)
also finds a posterior approximation by minimizing (4).
However, the original approach would define the q dis-
tribution as q(y, f |X) = p(y|X, θ)qGP(f |y,X), which
builds a recognition model that can be directly transfered
for later inference. By contrast, we define q(y, f |X) =
p(y|f)qGP(f |X), which corresponds to an approximation of
the IP prior. In other words, we approximate an intractable

1This allows us to compute gradients w.r.t. θ through m? and
K? using reparameterization trick (by definition of IP, f(x) =
gθ(x, z)), during the wake phase in Section 3.2.
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generative model using another generative model with a GP
prior and later, the resulting GP posterior q?GP(f |X,y) is
employed as the variational distribution. Importantly, we
never explicitly perform the sleep phase updates, that is, the
optimization of U(m,K), as there is an analytic solution
readily available, which can potentially save a significant
amount of computation.

Another interesting observation is that the sleep phase’s
objective U(m,K) also provides an upper-bound to the KL
divergence between the posterior distributions,

J = DKL[p(f |X,y, θ)||qGP(f |X,y)].

One can show that U is an upper-bound of J according to
the non-negativity and chain rule of the KL divergence:

U(m,K) = J + DKL[p(y|X, θ)||qGP(y|X)] ≥ J . (7)

Therefore, J is also decreased when the mean and covari-
ance functions are optimized during the sleep phase. This
bounding property justifies U(m,K) as a appropriate varia-
tional objective for posterior approximation.

3.2 Wake phase: a scalable approach to learning the
model parameters θ

In the wake phase of the original wake-sleep algorithm,
the IP model parameters θ are optimized by maximizing
a variational lower-bound on the log marginal likelihood
log p(y|X, θ). Unfortunately, this requires evaluating the
IP prior p(f |X, θ) which is intractable. But recall from (7)
that during the sleep phase DKL[p(y|X, θ)||qGP(y|X)] is
also minimized. Therefore we directly approximate the log
marginal likelihood using the optimal GP from the sleep
phase, i.e.

log p(y|X, θ) ≈ log q?GP(y|X, θ). (8)

This again demonstrates the key advantage of the proposed
sleep phase update via generative model matching. Also
it is a sensible objective for predictive inference as the GP
returned by wake-sleep will be used for making predictions.

Similar to GP regression, optimizing log q?GP(y|X, θ) can
be computationally expensive for large datasets. Therefore
sparse GP approximation techniques (Snelson & Ghahra-
mani, 2006; Titsias, 2009; Hensman et al., 2013; Bui et al.,
2016b) are applicable, but we leave them to future work and
consider an alternative approach that is related to random
feature approximations of GPs (Rahimi & Recht, 2008; Gal
& Turner, 2015; Gal & Ghahramani, 2016a; Balog et al.,
2016; Lázaro-Gredilla et al., 2010).

Note that log q?GP(y|X, θ) can be approximated by the log
marginal likelihood of a Bayesian linear regression model
with S randomly sampled dreamed functions, and a coeffi-

Algorithm 1 Variational Implicit Processes (VIP)
Require: data D = (X,y); IP IP(gθ(·, ·), pz); variational
distribution qϕ(a); hyper-parameter α

1: while not converged do
2: sample mini-batch {(xm, ym)}Mm=1 ∼ DM
3: sample S function values:

zs ∼ p(z), fθs (xm) = gθ(xm, zs)
4: solutions of sleep phase:

m?(xm) = 1
S

∑S
s=1 f

θ
s (xm),

∆s(xm) = fθs (xm)−m?(xm)
5: compute the wake phase energy LαGP(θ, ϕ) in (11)

using (10)
6: gradient descent on LαGP(θ, ϕ) w.r.t θ, ϕ, via repa-

rameterization tricks
7: end while

cient vector a = (a1, ..., aS):

log q?GP(y|X, θ) ≈ log

∫ ∏
n

q?(yn|xn,a, θ)p(a)da, (9)

q?(yn|xn,a, θ) = N
(
yn;µ(xn,a, θ), σ

2
)
,

µ(xn,a, θ) = m?(xn) +
1√
S

∑
s

∆s(xn)as,

∆s(xn) = fθs (xn)−m?(xn), p(a) = N (a; 0, I).

(10)

For scalable inference, we follow Li & Gal (2017) to approx-
imate (9) by the α-energy (see Appendix B), with qϕ(a) =
N (a;µ,Σ) and mini-batch data {xm, ym} ∼ DM :

log q?GP(y|X, θ) ≈ LαGP(θ, ϕ)

=
N

αM

M∑
m

logEqϕ(a) [q?(ym|xm,a, θ)α]

−DKL[qϕ(a)||p(a)].

(11)

See Algorithm 1 for the full algorithm. When α → 0 the
α-energy reduces to the variational lower-bound, and em-
pirically the α-energy returns better approximations when
α > 0. For Bayesian linear regression (10) the exact pos-
terior of a is a multivariate Gaussian, which justifies our
choice of qϕ(a). Stochastic optimization is applied to opti-
mize θ and ϕ jointly, making our method highly scalable.

3.3 Computational complexity and scalable
predictive inference

Assume the evaluation of a sampled function value f(x) =
gθ(x, z) for a given input x takes O(C) time. The VIP
has time complexity O(CMS + MS2 + S3) in training,
where M is the size of a mini-batch, and S is the number
of random functions sampled from IP(gθ(·, ·), pz). Note
that approximate inference techniques in z space, e.g. mean-
field Gaussian approximations to the posterior of Bayesian
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neural network weights (Blundell et al., 2015; Hernández-
Lobato et al., 2016; Li & Gal, 2017), also take O(CMS)
time. Therefore when C is large (typically the case for
neural networks) the additional cost is often negligible, as
S is usually significantly smaller than the typical number of
inducing points in sparse GP (S = 20 in the experiments).

Predictive inference follows the standard GP equations to
compute q?GP(f∗|X∗,X,y, θ?) on the test set X∗ with K
datapoints: f∗|X∗,X,y ∼ N (f∗; m∗,Σ∗),

m∗ = m?(X∗) + K∗f (Kff + σ2I)−1(y −m?(X)),

Σ∗ = K∗∗ −K∗f (Kff + σ2I)−1Kf∗.
(12)

Recall that the optimal variational GP approximation has
mean and covariance functions defined as (5) and (6), re-
spectively, which means that Kff has rank S. Therefore
predictive inference requires both function evaluations and
matrix inversion, which costsO(C(K+N)S+NS2 +S3)
time. This complexity can be further reduced: note that
the computational cost is dominated by (Kff + σ2I)−1.
Denote the Cholesky decomposition of the kernel matrix
Kff = BB>. It is straightforward to show that in the
Bayesian linear regression problem (10) the exact posterior
of a is q(a|X,y) = N (a;µ,Σ), with µ = 1

σ2 ΣB>(y −
m), σ2Σ−1 = B>B + σ2I. Therefore the parameters of
the GP predictive distribution in (12) are reduced to:

m∗ = m?(X∗) + φ>∗ µ, Σ∗ = φ>∗ Σφ∗, (13)

with the elements in φ∗ as (φ∗)s = ∆s(x∗)/
√
S. This

reduces the prediction cost to O(CKS + S3), which is on
par with e.g. conventional predictive inference techniques
for Bayesian neural networks that also cost O(CKS). In
practice we use the mean and covariance matrix from
q(a) to compute the predictive distribution. Alternatively
one can directly sample a ∼ q(a) and compute f∗ =∑S
s=1 asf

θ
s (X∗), which is also an O(CKS + S3) infer-

ence approach but would have higher variance.

4 Experiments
In this section, we test the capability of VIPs with var-
ious tasks, including time series interpolation, Bayesian
NN/LSTM inference, and Approximate Bayesian Computa-
tion (ABC) with simulators,etc. When the VIP is applied to
Bayesian NN/LSTM (Example 3-4), the prior parameters
over each weight are tuned individually. We use S = 20 for
VIP unless noted otherwise. We focus on comparing VIPs
as an inference method to other Bayesian approaches, with
detailed experimental settings presented in Appendix F.

4.1 Synthetic example

We first assess the behaviours of VIPs, including its quality
of uncertainty estimation and the ability to discover struc-

tures under uncertainty. The synthetic training set is gen-
erated by first sampling 300 inputs x from N (0, 1). Then,
for each x obtained, the corresponding target y is simulated
as y = cos 5x

|x|+1 + ε, ε ∼ N (0, 0.1). The test set consists
of 103 evenly spaced points on [−3, 3]. We use an IP with
a Bayesian neural network (1-10-10-1 architecture) as the
prior. We use α = 0 for the wake-step training. We also
compare VIP with the exact full GP with optimized composi-
tional kernel (RBF+Periodic), and another BNN with identi-
cal architecture but trained using variational dropout (VDO)
with dropout rate p = 0.99 and length scale l = 0.001. The
(hyper-)parameters are optimized using 500 epochs (batch
training) with Adam optimizer (learning rate = 0.01).

Figure 2 visualizes the results. Compared with VDO and
the full GP, the VIP predictive mean recovers the ground
truth function better. Moreover, VIP provides the best pre-
dictive uncertainty, especially when compared with VDO:
it increases smoothly when |x| → 3, where training data is
sparse around there. Although the composition of periodic
kernel helps the full GP to return a better predictive mean
than VDO (but worse than VIP), it still over-fits to the data
and returns a poor uncertainty estimate around |x| ≈ 2.5.

Test Negative Log-likelihood (NLL) and RMSE results re-
veal similar conclusions (see the left two plots in Figure 3),
where VIP significantly outperforms VDO and GP.

4.2 Solar irradiance interpolation under missingness

Time series interpolation is an ideal task to evaluate the qual-
ity of uncertainty estimate. We compare the VIP (α = 0)
with a variationally sparse GP (SVGP, 100 inducing points),
an exact GP and VDO on the solar irradiance dataset (Lean
et al., 1995). The dataset is constructed following (Gal &
Turner, 2015), where 5 segments of length 20 are removed
for interpolation. All the inputs are then centered, and the
targets are standardized. We use the same settings as in
Section 4.1, except that we run Adam with learning rate =
0.001 for 5000 iterations. Note that GP/SVGP predictions
are reproduced directly from (Gal & Turner, 2015).

Predictive interpolations are shown in Figure 4. We see
that VIP and VDO give similar interpolation behaviors.
However, VDO overall under-estimates uncertainty when
compared with VIP, especially in the interval [−100, 200].
VDO also incorrectly estimates the mean function around
x = −150 where the ground truth there is a constant. On
the contrary, VIP is able to recover the correct mean estima-
tion around this interval with high confidence. GP methods
recover the exact mean of the training data with high confi-
dence, but they return poor estimates of predictive means for
interpolation. Quantitatively, the right two plots in Figure 3
show that VIP achieves the best NLL/RMSE performance,
again indicating that its returns high-quality uncertainties
and accurate mean predictions.
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Figure 2: First row: Predictions returned from VIP (left), VDO (middle) and exact GP with
RBF + Periodic kernel (right), respectively. Dark grey dots: noisy observations; dark
line: clean ground truth function; dark gray line: predictive means; Gray shaded area:
confidence intervals with 2 standard deviations. Second row: Corresponding predictive
uncertainties.

Figure 3: Test performance on synthetic
example (left two) and solar irradiance
interpolation (right two)

Figure 4: Interpolations returned by VIP (top), variational dropout
(middle), and exact GP (bottom), respectively. SVGP visualiza-
tion is omitted as it looks nearly the same. Here grey dots: training
data, red dots: test data, dark dots: predictive means, light grey
and dark grey areas: Confidence intervals with 2 standard de-
viations of the training and test set, respectively. Note that our
GP/SVGP predictions reproduces (Gal & Turner, 2015).

4.3 Predictive Performance: Multivariate regression

We apply the VIP inference to a Bayesian neural network
(VIP-BNN, example 3) and a neural sampler (VIP-NS, ex-
ample 1) , using real-world multivariate regression datasets
from the UCI data repository (Lichman et al., 2013). We
mainly compare with the following BNNs baselines: vari-
ational Gaussian inference with reparameterization tricks
(VI, Blundell et al., 2015), variational dropout (VDO, Gal
& Ghahramani, 2016a), and variational alpha dropout (Li &
Gal, 2017). We also include the variational GP (SVGP, (Tit-
sias, 2009)), exact GP and the functional BNNs (fBNN)2,
and the results for fBNN is quoted from Sun et al. (2018).
All neural networks have two hidden layers of size 10,

2fBNN is a recent inference method designed for BNNs, where
functional priors (GPs) are used to regularize BNN training. See
related work for further discussions.

and are trained for 1,000 (except for fBNNs where the
results cited use 2,000 epochs). The observational noise
variance for VIP and VDO is tuned over a validation set,
as detailed in Appendix F. The α value for both VIP and
alpha-variational inference are fixed to 0.5, as suggested in
(Hernández-Lobato et al., 2016). The experiments are re-
peated for 10 times on all datasets except Protein, on which
we report an averaged results across 5 repetitive runs.

Results are shown in Table 1 and 2 with the best perfor-
mances boldfaced. Note that our method is not directly
comparable to exact (full) GP and fBNN in the last two
columns. They are only trained on small datasets since they
require the computation of the exact GP likelihood, and
fBNNs are trained for longer epochs. Therefore they are not
included for the overall ranking shown in the last row of the
tables. VIP methods consistently outperform other methods,
obtaining the best test-NLL in 7 datasets, and the best test
RMSE in 8 out of the 9 datasets. In addition, VIP-BNN
obtains the best ranking among 6 methods. Note also that
VIP marginally outperforms exact GPs and fBNNs (4 of 5
in NLLs), despite the comparison is not even fair. Finally,
it is encouraging to see that, despite its general form, the
VIP-NS achieves the second best average ranking in RMSE,
outperforming many specifically designed BNN algorithms.

4.4 Bayesian LSTM for predicting power conversion
efficiency of organic photovoltaics molecules

To demonstrate the scalability and flexibility of VIP, we
perform experiments with the Harvard Clean Energy Project
Data, the world’s largest materials high-throughput virtual
screening effort (Hachmann et al., 2014). A large number of
molecules of organic photovoltaics are scanned to find those
with high power conversion efficiency (PCE) using quantum-
chemical techniques. The target value of the dataset is the
PCE of each molecule, and the input is the variable-length
character sequence of the molecule structures. Previous
studies have handcrafted (Pyzer-Knapp et al., 2015; Bui
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Table 1: Regression experiment: Average test negative log likelihood
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP fBNN
boston 506 13 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.63±0.04 2.46±0.04 2.30±0.10
concrete 1030 8 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.4±0.01 3.05±0.02 3.09±0.01
energy 768 8 0.60±0.03 0.59±0.04 2.17±0.02 1.13±0.02 0.95±0.09 2.31±0.02 0.57±0.02 0.68±0.02
kin8nm 8192 8 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 -0.76±0.00 N/A±0.00 N/A±0.00
power 9568 4 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 2.82±0.00 N/A±0.00 N/A±0.00
protein 45730 9 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 3.01±0.00 N/A±0.00 N/A±0.00
red wine 1588 11 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 0.98±0.02 0.26±0.03 1.04±0.01
yacht 308 6 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 2.29±0.03 0.10±0.05 1.03±0.03
naval 11934 16 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.81±0.00 N/A±0.00 N/A±0.00
Avg.Rank 1.77±0.54 2.77±0.57 4.66±0.28 3.88±0.38 2.55±0.37 4.44±0.66 N/A±0.00 N/A±0.00

Table 2: Regression experiment: Average test RMSE
Dataset N D VIP-BNN VIP-NS VI VDO α = 0.5 SVGP exact GP fBNN
boston 506 13 2.88±0.14 2.78±0.12 3.85±0.22 3.15±0.11 3.06±0.09 3.30±0.21 2.95±0.12 2.37±0.101
concrete 1030 8 4.81±0.13 5.54±0.09 6.51±0.10 6.11±0.10 5.18±0.16 7.25±0.15 5.31±0.15 4.93±0.18
energy 768 8 0.45±0.01 0.45±0.05 2.07±0.05 0.74±0.04 0.51±0.03 2.39±0.06 0.45±0.01 0.41±0.01
kin8nm 8192 8 0.07±0.00 0.08±0.00 0.10±0.00 0.10±0.00 0.09±0.00 0.11±0.01 N/A±0.00 N/A±0.00
power 9568 4 4.11±0.05 4.11±0.04 4.11±0.04 4.38±0.03 4.08±0.00 4.06±0.04 N/A±0.00 N/A±0.00
protein 45730 9 4.25±0.07 4.54±0.03 4.88±0.04 4.79±0.01 4.46±0.00 4.90±0.01 N/A±0.00 N/A±0.00
red wine 1588 11 0.64±0.01 0.66±0.01 0.66±0.01 0.64±0.01 0.69±0.01 0.65±0.01 0.62±0.01 0.67±0.01
yacht 308 6 0.32±0.06 0.54±0.09 0.79±0.05 1.03±0.06 0.49±0.04 2.25±0.13 0.35±0.04 0.60±0.06
naval 11934 16 0.00±0.00 0.00±0.00 0.38±0.00 0.01±0.00 0.01±0.00 0.00±0.00 N/A±0.00 N/A±0.00
Avg.Rank 1.33±0.23 2.22±0.36 4.66±0.33 4.00±0.44 3.11±0.42 4.44±0.72 N/A±0.00 N/A±0.00

Figure 5: Test performance
on clean energy dataset

et al., 2016a; Hernández-Lobato et al., 2016) or learned
fingerprint features (Duvenaud et al., 2015) that transforms
the raw string data into fixed-size features for prediction.

We use a VIP with a prior defined by a Bayesian LSTM
(200 hidden units) and α = 0.5. We replicate the experimen-
tal settings in Bui et al. (2016a); Hernández-Lobato et al.
(2016), except that our method directly takes raw sequential
molecule structure data as input. We compare our approach
with a deep GP trained with expectation propagation (DGP,
Bui et al., 2016a), variational dropout for LSTM (VDO-
LSTM, Gal & Ghahramani, 2016b), alpha-variational in-
ference LSTM (α-LSTM, Li & Gal, 2017), BB-α on BNN
(Hernández-Lobato et al., 2016), VI on BNN (Blundell
et al., 2015), and FITC GP (Snelson & Ghahramani, 2006).
Results for the latter 4 methods are quoted from Hernández-
Lobato et al. (2016); Bui et al. (2016a). Results in Figure 5
show that VIP significantly outperforms other baselines and
hits a state-of-the-art result in test likelihood and RMSE.

4.5 ABC example: the Lotka–Volterra model

Finally, we apply the VIP on an Approximate Bayesian
Computation (ABC) example with the Lotka–Volterra (L-V)
model that models the continuous dynamics of stochastic
population of a predator-prey system. An L-V model con-
sists of 4 parameters θ = {θ1, θ2, θ3, θ4} that controls the
rate of four possible random events in the model:

ẏ = θ1xy − θ2y, ẋ = θ3x− θ4xy,

where x is the population of the predator, and y is the popu-
lation of the prey. Therefore the L-V model is an implicit
model, which allows the simulation of data but not the eval-
uation of model density. We follow the setup of (Papamakar-
ios & Murray, 2016) to select the ground truth parameter of

Table 3: ABC with the Lotka–Volterra model
Method VIP-

BNN
VDO-
BNN

SVGP MCMC-
ABC

SMC-
ABC

Test NLL 0.485 1.25 1.266 0.717 0.588
Test RMSE 0.094 0.80 0.950 0.307 0.357

the L-V model, so that the model exhibit a oscillatory behav-
ior which makes posterior inference difficult. Then the L-V
model is simulated for 25 time units with a step size of 0.05,
resulting in 500 training observations. The prediction task
is to extrapolate the simulation to the [25, 30] time interval.

We consider (approximate) posterior inference using two
types of approaches: regression-based methods (VIP-BNN,
VDO-BNN and SVGP), and ABC methods (MCMC-ABC
(Marjoram et al., 2003) and SMC-ABC (Beaumont et al.,
2009; Bonassi et al., 2015)). ABC methods first perform
posterior inference in the parameter space, then use the
L-V simulator with posterior parameter samples for pre-
diction. By contrast, regression-based methods treat this
task as an ordinary regression problem, where VDO-BNN
fits an approximate posterior to the NN weights, and VIP-
BNN/SVGP perform predictive inference directly in func-
tion space. Results are shown in Table 3, where VIP-BNN
outperforms others by a large margin in both test NLL and
RMSE. More importantly, VIP is the only regression-based
method that outperforms ABC methods, demonstrating its
flexibility in modeling implicit systems.

5 Related Research
In the world of nonparametric models, Gaussian Processes
(GPs, Rasmussen & Williams, 2006) provide accurate un-
certainty estimates on unseen data, making them popular
choices for Bayesian modelling in the past decades. Unfor-
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tunately, the O(N3) time and O(N2) space complexities
make GPs impractical for large-scale datasets, therefore
people often resort to approximations (Quiñonero-Candela
& Rasmussen, 2005; Snelson & Ghahramani, 2006; Titsias,
2009; Hensman et al., 2013; Bui et al., 2016b; Saatçi, 2012).
Another intrinsic issue is the limited representational power
of GPs with stationary kernels, limiting the applications of
GP methods to high dimensional data (Bengio et al., 2005).

In the world of parametric modeling, deep neural networks
are extremely flexible function approximators that enable
learning from very high-dimensional and structured data
(Bengio, 2009; Hinton et al., 2006; Salakhutdinov & Hin-
ton, 2009; Krizhevsky et al., 2012; Simonyan & Zisserman,
2014). As people starts to apply deep learning techniques to
critical applications such as health care, uncertainty quantifi-
cation of neural networks has become increasingly impor-
tant. Although decent progress has been made for Bayesian
neural networks (BNNs) (Denker & Lecun, 1991; Hinton
& Van Camp, 1993; Barber & Bishop, 1998; Neal, 2012;
Graves, 2011; Blundell et al., 2015; Hernández-Lobato &
Adams, 2015; Li & Gal, 2017), uncertainty in deep learning
still remains an open challenge.

Research in the GP-BNN correspondance has been exten-
sively explored in order to improve the understandings of
both worlds (Neal, 1996; 2012; Williams, 1997; Hazan &
Jaakkola, 2015; Gal & Ghahramani, 2016a; Lee et al., 2017;
Matthews et al., 2018). Notably, in Neal (1996); Gal &
Ghahramani (2016a) a one-layer BNN with non-linearity
σ(·) and mean-field Gaussian prior is approximately equiva-
lent to a GP with kernel function

KVDO(x1,x2) = Ep(w)p(b)[σ(w>x1 + b)σ(w>x2 + b)].

Later Lee et al. (2017) and Matthews et al. (2018) showed
that a deep BNN is approximately equivalent to a GP with a
compositional kernel (Cho & Saul, 2009; Heinemann et al.,
2016; Daniely et al., 2016; Poole et al., 2016) that mimic
the deep net. These approaches allow us to construct ex-
pressive kernels for GPs (Krauth et al., 2016), or conversely,
exploit the exact Bayesian inference on GPs to perform ex-
act Bayesian prediction for BNNs (Lee et al., 2017). The
above kernel is compared with equation (6) in Appendix E.

Alternative schemes have also been investigated to exploit
deep structures for GP model design. These include: (1)
deep GPs (Damianou & Lawrence, 2013; Bui et al., 2016a),
where compositions of GP priors are proposed to represent
prior over compositional functions; (2) the search and design
of kernels for accurate and efficient learning (van der Wilk
et al., 2017; Duvenaud et al., 2013; Tobar et al., 2015; Beck
& Cohn, 2017; Samo & Roberts, 2015), and (3) deep kernel
learning that uses deep neural net features as the inputs to
GPs (Hinton & Salakhutdinov, 2008; Wilson et al., 2016;
Al-Shedivat et al., 2017; Bradshaw et al., 2017; Iwata &

Ghahramani, 2017). Frustratingly, the first two approaches
still struggle to model high-dimensional structured data such
as texts and images; and the third approach is only Bayesian
w.r.t. the last output layer.

The intention of our work is not to understand BNNs as
GPs, nor to use deep learning to help GP design. Instead
we directly treat a BNN as an instance of implicit processes
(IPs), and the GP is used as a variational distribution to
assist predictive inference. This approximation does not
require previous assumptions in the GP-BNN correspon-
dence literature (Lee et al., 2017; Matthews et al., 2018)
nor the conditions in compositional kernel literature. There-
fore the VIP approach also retains some of the benefits of
Bayesian nonparametric approaches, and avoids issues of
weight-space inference such as symmetric posterior modes.

To certain extent, the approach in Flam-Shepherd et al.
(2017) resembles an inverse of VIP by encoding proper-
ties of GP priors into BNN weight priors, which is then used
to regularize BNN inference. This idea is further investi-
gated by a concurrent work on functional BNNs (Sun et al.,
2018), where GP priors are directly used to regularize BNN
training through gradient estimators (Shi et al., 2018).

Concurrent work of neural process (Garnelo et al., 2018)
resembles the neural sampler, a special case of IPs. However,
it performs inference in z space using the variational auto-
encoder approach (Kingma & Welling, 2013; Rezende et al.,
2014), which is not applicable to other IPs such as BNNs.
By contrast, the proposed VIP approach applies to any IPs,
and performs inference in function space. In the experiments
we also show improved accuracies of the VIP approach on
neural samplers over many existing Bayesian approaches.

6 Conclusions
We presented a variational approach for learning and
Bayesian inference over function space based on implicit
process priors. It provides a powerful framework that
combines the rich flexibilities of implicit models with
the well-calibrated uncertainty estimates from (paramet-
ric/nonparametric) Bayesian models. As an example, with
BNNs as the implicit process prior, our approach outper-
formed many existing GP/BNN methods and achieved sig-
nificantly improved results on molecule regression data.
Many directions remain to be explored. Better posterior ap-
proximation methods beyond GP prior matching in function
space will be designed. Classification models with implicit
process priors will be developed. Implicit process latent
variable models will also be derived in a similar fashion as
Gaussian process latent variable models. Future work will
investigate novel inference methods for models equipped
with other implicit process priors, e.g. data simulators in
astrophysics, ecology and climate science.
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Appendix

A Brief review of Gaussian processes
Gaussian Processes (GPs, Rasmussen & Williams, 2006),
as a popular example of Bayesian nonparametrics, provides
a principled probabilistic framework for non-parametric
Bayesian inference over functions. This is achieved by im-
posing rich and flexible nonparametric priors over functions
of interest. As flexible and interpretable function approxi-
mators, their Bayesian nature also enables GPs to provide
valuable information of uncertainties regarding predictions
for intelligence systems, all wrapped up in a single, exact
closed form solution of posterior inference.

We briefly introduce GPs for regression. Assume that we
have a set of observational data {(xn, yn}Nn=1), where xn
is the D dimensional input of n th data point, and yn is
the corresponding scalar target of the regression problem.
A Gaussian Process model assumes that yn is generated
according the following procedure: firstly a function f(·)
is drawn from a Gaussian Process GP(m, k) (to be defined
later). Then for each input data xn, the corresponding yn is
then drawn according to:

yn = f(xn) + εn, ε ∼ N (0, σ2), n = 1, · · · , N

A Gaussian Process is a nonparametric distribution defined
over the space of functions, such that:
Definition 2 (Gaussian Processes). A Gaussian process
(GP) is a collection of random variables, any finite number
of which have a joint Gaussian distributions. A Gaussian
Process is fully specified by its mean function m(·) : RD 7→
R and covariance function K(·, ·) : (RD,RD) 7→ R, such
that any finite collection of function values f are distributed
as Gaussian distribution N (f ; m,Kff ), where (m)n =
m(xn), (Kff )n,n′ = K(xn,xn′).

Now, given a set of observational data {(xn, yn)}Nn=1, we
are able to perform probabilistic inference and assign poste-
rior probabilities over all plausible functions that might have
generated the data. Under the setting of regression, given a
new test point input data x∗, we are interested in posterior
distributions over f∗. Fortunately, this posterior distribution
of interest admits a closed form solution f∗ ∼ N (µ∗,Σ∗):

µ∗ = m +Kx∗f (Kff + σ2I)−1(y −m) (A.1)

Σ∗ = Kx∗x∗ −Kx∗f (Kff + σ2I)−1Kfx∗ (A.2)

In our notation, (y)n = yn, (Kx∗f )n = K(x∗,xn), and
Kx∗x∗ = K(x∗,x∗). Although the Gaussian Process re-
gression framework is theoretically very elegant, in practice

its computational burden is prohibitive for large datasets
since the matrix inversion (Kff +σ2I)−1 takesO(N3) time
due to Cholesky decomposition. Once matrix inversion is
done, predictions in test time can be made in O(N) for
posterior mean µ∗ and O(N2) for posterior uncertainty Σ∗,
respectively.

Despite the success and popularity of GPs (and other
Bayesian non-parametric methods) in the past decades, their
O(N3) computation andO(N2) storage complexities make
it impractical to apply GPs to large-scale datasets. There-
fore, people often resort to complicated approximate meth-
ods, e.g. see Seeger et al. (2003); Quiñonero-Candela &
Rasmussen (2005); Snelson & Ghahramani (2006); Titsias
(2009); Hensman et al. (2013); Bui et al. (2016b); Bui &
Turner (2014); Saatçi (2012); Cunningham et al. (2008);
Turner & Sahani (2010).

Another critical issue to be addressed is the representational
power of GP kernels. It has been argued that local ker-
nels commonly used for nonlinear regressions are not able
to obtain hierarchical representations for high dimensional
data (Bengio et al., 2005), which limits the usefulness of
Bayesian non-parametric models for complicated tasks. A
number of solutions were proposed, including deep GPs
(Damianou & Lawrence, 2013; Cutajar et al., 2016; Bui
et al., 2016a), the design of expressive kernels (van der Wilk
et al., 2017; Duvenaud et al., 2013; Tobar et al., 2015), and
the hybrid model with features from deep neural nets as the
input of a GP (Hinton & Salakhutdinov, 2008; Wilson et al.,
2016). However, the first two approaches still struggle to
model complex high dimensional data such as texts and im-
ages; and in the third approach, the merits of fully Bayesian
approach has been discarded.

B Brief review of variational inference, and
the black-box α-energy

We give a brief review of modern variational techniques,
including standard variational inference and black-box α-
divergence minimization (BB-α), on which our methodol-
ogy is heavily based. Considers the problem of finding the
posterior distribution, p(θ|D, τ), D = {xn}Nn=1 under the
model likelihood p(x|θ, τ) and a prior distribution p0(θ):

p(θ|D, τ) ∝ 1

Z
p0(θ)

∏
n

p(xn|θ, τ).

Here τ is the hyper-parameter of the model, which will be
optimized by (approximate) maximum likelihood.

Variational inference (VI, Jordan et al., 1999) converts the
above inference problem into an optimization problem, by
first proposing a class of approximate posterior q(θ), and
then minimize the KL-divergence from the approximate
posterior to the true posterior DKL[q||p]. Equivalently, VI
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optimizes the following variational free energy,

FVFE = log p(D|τ)−DKL[q(θ)||p(θ|D, τ)]

= Eq(θ)
[
log

p(D, θ|τ)

q(θ)

]
.

Built upon the idea of VI, BB-α is a modern black-box
variational inference framework that unifies and interpolates
between VI (Jordan et al., 1999) and expectation propaga-
tion (EP)-like algorithms (Minka, 2001; Li et al., 2015).
BB-α performs approximate inference by minimizing the
following α-divergence (Zhu & Rohwer, 1995) Dα[p||q]:

Dα[p||q] =
1

α(1− α)

(
1−

∫
p(θ)αq(θ)1−αdθ

)
.

α-divergence is a generic class of divergences that in-
cludes the inclusive KL-divergence (α=1, corresponds to
EP), Hellinger distance (α=0.5), and the exclusive KL-
divergence (α = 0, corresponds to VI) as special cases.

Traditionally, power EP (Minka, 2004) optimizes an α-
divergence locally with exponential family approximation
q(θ) ∝ 1

Z p0(θ)
∏
n f̃n(θ),f̃n(θ) ∝ exp

[
λTnφ(θ)

]
via mes-

sage passing. It converges to a fixed point of the so called
power EP energy:

LPEP(λ0, {λn}) = logZ(λ0) + (
N

α
− 1) logZ(λq)

− 1

α

N∑
n=1

log

∫
p(xn|θ, τ)α exp

[
(λq − αλn)Tφ(θ)

]
dθ,

where λq = λ0 +
∑N
n=1 λn is the natural parameter of q(θ).

On the contrary, BB-α directly optimizes LPEP with tied
factors f̃n = f̃ to avoid prohibitive local factor updates and
storage on the whole dataset. This means λn = λ for all n
and λq = λ0 + Nλ. Therefore instead of parameterizing
each factors, one can directly parameterize q(θ) and replace
all the local factors in the power-EP energy function by
f̃(θ) ∝ (q(θ)/p0(θ))1/N . After re-arranging terms, this
gives the BB-α energy:

Lα(q) = − 1

α

∑
n

logEq

[(
fn(θ)p0(θ)

1
N

q(θ)
1
N

)α]
.

which can be further approximated by the following if the
dataset is large (Li & Gal, 2017):

Lα(q) = DKL[q||p0]− 1

α

∑
n

logEq [p(xn|θ, τ)α] .

The optimization of Lα(q) could be performed in a black-
box manner with reparameterization trick (Kingma &
Welling, 2013), Monte Carlo (MC) approximation and mini-
batch training. Empirically, it has been shown that BB-α

with α 6= 0 can return significantly better uncertainty esti-
mation than VI, and has been applied successfully in dif-
ferent scenarios (Li & Gal, 2017; Depeweg et al., 2016).
From hyper-parameter learning (i.e., τ in p(xn|θ, τ)), it is
shown in Li & Turner (2016) that the BB-α energy Lα(q)
constitutes a better estimation of log marginal likelihood,
log p(D|τ) when compared with the variational free energy.
Therefore, for both inference and learning, BB-α energy is
extensively used in this paper.

C Derivations

C.1 Proof of Proposition 1 (finite dimensional case)

Proposition 1. If z is a finite dimensional random vari-
able, then there exists a unique stochastic process, with
finite marginals that are distributed exactly according to
Definition 1.

Proof Generally, consider the following noisy IP model:

f(·) ∼ IP(gθ(·, ·), pz), yn = f(xn) + εn, εn ∼ N (0, σ2).

For any finite collection of random variables y1:n =
{y1, ..., yn}, ∀n we denote the induced distribution as
p1:n(y1:n). Note that p1:n(y1:n) can be represented as
Ep(z)[

∏n
i=1N (yi; g(xi; z), σ2)]. Therefore for any m < n,

we have∫
p1:n(y1:n)dym+1:n

=

∫ ∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dzdym+1:n

=

∫ ∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dym+1:ndz

=

∫ m∏
i=1

N (yi; g(xi, z), σ2)p(z)dz = p1:m(y1:m).

Note that the swap of the order of integration relies on that
the integral is finite, which is true when the prior p(z) is
proper. Therefore, the marginal consistency condition of
Kolmogorov extension theorem is satisfied. Similarly, the
permutation consistency condition of Kolmogorov extension
theorem can be proved as follows: assume π(1 : n) =
{π(1), ..., π(n)} is a permutation of the indices 1 : n, then

pπ(1:n)(yπ(1:n))

=

∫ n∏
i=1

N (yπ(i); g(xπ(i), z), σ2)p(z)dz

=

∫ n∏
i=1

N (yi; g(xi, z), σ2)p(z)dz = p1:n(y1:n).



Variational Implicit Processes

Therefore, by Kolmogorov extension theorem, there exists
a unique stochastic process, with finite marginals that are
distributed exactly according to Definition 1.

C.2 Proof of Proposition 2 (infinite dimensional case)

Proposition 2. Let z(·) ∼ SP(0, C) be a centered continu-
ous stochastic process on L2(Rd) with covariance func-
tion C(·, ·). Then the operator g(x, z) = O(z)(x) :=

h(
∫ ∑M

l=0Kl(x,x
′)z(x′)dx′), 0 < M < +∞ defines

a stochastic process if Kl ∈ L2(Rd × Rd) , h is a
Borel measurable, bijective function in R and there exist
0 ≤ A < +∞ such that |h(x)| ≤ A|x| for ∀x ∈ R.

Proof Since L2(Rd) is closed under finite summation,
without loss of generality, we consider the case of M =
1 where O(z)(x) = h(

∫
K(x,x′)z(x′)dx′). According

to Karhunen-Loeve expansion (K-L expansion) theorem
(Loeve, 1977), the stochastic process z can be expanded as
the stochastic infinite series,

z(x) =

∞∑
i

Ziφi(x),

∞∑
i

λi < +∞.

Where Zi are zero-mean, uncorrelated random variables
with variance λi. Here {φi}∞i=1 is an orthonormal basis of
L2(Rd) that are also eigen functions of the operator OC(z)
defined by OC(z)(x) =

∫
C(x,x′)z(x′)dx′. The variance

λi of Zi is the corresponding eigen value of φi(x).

Apply the linear operator

OK(z)(x) =

∫
K(x,x′)z(x′)dx′

on this K-L expansion of z, we have:

OK(z)(x) =

∫
K(x,x′)z(x′)dx′

=

∫
K(x,x′)

∞∑
i

Ziφi(x
′)dx′

=

∞∑
i

Zi

∫
K(x,x′)φi(x

′)dx′,

(C.1)

where the exchange of summation and integral is guar-
anteed by Fubini’s theorem. Therefore, the functions
{
∫
x
K(x,x′)φi(x

′)dx′}∞i=1 forms a new basis of L2(Rd).
To show that the stochastic series C.1 converge:

||
∞∑
i

Zi

∫
K(x,x′)φi(x

′)dx||2L2

≤ ||OK ||2||
∞∑
i

Ziφi(x
′)||2L2

= ||OK ||2
∞∑
i

||Zi||22,

where the operator norm is defined by

||OK || := inf{c ≥ 0 : ||Ok(f)||L2 ≤ c||f ||L2 , ∀f ∈ L2(Rd)}.

This is a well defined norm since OK is a bounded oper-
ator (K ∈ L2(Rd × Rd)). The last equality follows from
the orthonormality of {φi}. The condition

∑∞
i λi < ∞

further guarantees that
∑∞
i ||Zi||2 converges almost surely.

Therefore, the random series (C.1) converges in L2(Rd)
a.s..

Finally we consider the nonlinear mapping h(·). With h(·)
a Borel measurable function satisfying the condition that
there exist 0 ≤ A < +∞ such that |h(x)| ≤ A|x| for
∀x ∈ R, it follows that h ◦OK(z) ∈ L2(Rd). In summary,
g = Ok(z) = h ◦OK(z) defines a well-defined stochastic
process on L2(Rd).

Despite of its simple form, the operator g = h ◦OK(z) is
in fact the building blocks for many flexible transformations
over functions (Guss, 2016; Williams, 1997; Stinchcombe,
1999; Le Roux & Bengio, 2007; Globerson & Livni, 2016) .
Recently Guss (2016) proposed the so called Deep Function
Machines (DFMs) that possess universal approximation
ability to nonlinear operators:

Definition 3 (Deep Function Machines (Guss, 2016)). A
deep function machine g = ODFM (z, S) is a computa-
tional skeleton S indexed by I with the following properties:

• Every vertex in S is a Hilbert space Hl where l ∈ I .

• If nodes l ∈ A ⊂ I feed into l′ then the activation on
l′ is denoted yl ∈ Hl and is defined as

yl
′

= h ◦ (
∑
l∈A

OKl
(yl))

Therefore, by Proposition 2, we have proved:
Corollary 2 Let z(·) ∼ SP(0, C) be a centered continuous
stochastic process on H = L2(Rd). Then the Deep function
machine operator g = ODFM (z, S) defines a well-defined
stochastic process on H.

C.3 Inverse Wishart process as a prior for kernel
functions

Definition 4 (Inverse Wishart processes (Shah et al., 2014)).
Let Σ be random function Σ(·, ·) : X × X → R. A stochas-
tic process defined on such functions is called the inverse
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Wishart process on X with parameter ν and base function
Ψ : X × X → R, if for any finite collection of input data
X = {xs}1≤s≤Ns , the corresponding matrix-valued eval-
uation Σ(X,X) ∈ Π(Ns) is distributed according to an
inverse Wishart distribution Σ(X,X) ∼ IWS(ν,Ψ(X,X)).
We denote Σ ∼ IWP(v,Ψ(·, ·)).

Consider the problem in Section 3.1 of minimizing the ob-
jective

U(m,K) = DKL[p(f ,y|X, θ)||qGP(f ,y|X,m(·),K(·, ·))]

Since we use q(y|f) = p(y|f), this reduces U(m,K) to
DKL[p(f |X, θ)||qGP(f |X,m,K)]. In order to obtain opti-
mal solution wrt. U(m,K), it sufficies to draw S fantasy
functions (each sample is a random function fs(·)) from the
prior distribution p(f |X, θ), and perform moment matching,
which gives exactly the MLE solution, i.e., empirical mean
and covariance functions

m?
MLE(x) =

∑
s

1

S
fs(x), (C.2)

K?MLE(x1,x2) =
1

S

∑
s

∆s(x1)∆s(x2), (C.3)

∆s(x) = fs(x)−m?
MLE(x). (C.4)

In practice, in order to gain computational advantage, the
number of fantasy functions S is often small, therefore we
further put an inverse wishart process prior over the GP
covariance function, i.e. K(·, ·) ∼ IWP(ν,Ψ). By doing
so, we are able to give MAP estimation instead of MLE
estimation. Since inverse Wishart distribution is conjugate
to multivariate Gaussian distribution, the maximum a poste-
riori (MAP) solution is given by

K?MAP(x1,x2)

=
1

ν + S +N + 1
{
∑
s

∆s(x1)∆s(x2) + Ψ(x1,x2)}.

(C.5)

Where N is the number of data points in the training set
X where m(·) and K(·, ·) are evaluated. Alternatively, one
could also use the posterior mean Estimator (PM) that mini-
mizes posterior expected squared loss:

K?PM(x1,x2)

=
1

ν + S −N − 1
{
∑
s

∆s(x1)∆s(x2) + Ψ(x1,x2)}.

(C.6)

In the implementation of this paper, we choose KPM estima-
tor with ν = N and Ψ(x1,x2) = ψδ(x1,x2). The hyper
parameter ψ is trained using fast grid search using the same
procedure for the noise variance parameter, as detailed in
Appendix F.

C.4 Derivation of the upper bound U(m,K)or sleep
phase

Applying the chaine rule of KL-divregence, we have

J (m,K) =DKL[p(f |X,y, θ)||qGP(f |X,y,m(·),K(·, ·))]
=DKL[p(f ,y|X, θ)||qGP(f ,y|X,m(·),K(·, ·))]
−DKL[p(y|X, θ)||qGP(y|X,m(·),K(·, ·))]

=U(m,K)−DKL[p(y|X, θ)||qGP(y|X,m(·),K(·, ·))].

Therefore, by the non-negative property of KL divergence,
we have J (m,K) < U(m,K). Since we select q(y|f) =
p(y|f), the optimal solution of U(m,K) also minimizes
DKL(p(y|X, θ)||qGP(y|X,m(·),K(·, ·))). Therefore not
only the upper bound U is optimized in sleep phase, the
gap −DKL(p(y|X, θ)||qGP(y|X,m(·),K(·, ·))) is also de-
creased when the mean and covariance functions are opti-
mized.

C.5 Empirical Bayes approximation for VIP with a
hierarchical prior on θ

The implicit processes (such as Bayesian neural networks
and GPs) could be sensitive to the choice of the model
parameters (that is, parameters θ of the prior). To make our
variational implicit process more robust we further present
an empirical Bayesian treatment, by introducing an extra
hierarchical prior distribution p(θ) on the prior parameters θ,
and fitting a variational approximation q(θ) to the posterior.
Sleep phase updates remain the same when conditioned on a
given configuration of θ. The α-energy term in wake phase
learning becomes

log qGP(y|X)

= log

∫
θ

qGP(y|X, θ)p(θ)dθ ≈ LαGP(q(a), q(θ)),

LαGP(q(a), q(θ))

=
1

α

N∑
n

logEq(a)q(θ) [q?(yn|xn,a, θ)α]

−DKL[q(a)||p(a)]−DKL[q(θ)||p(θ)].

(C.7)

Compared with the approximate MLE method, the only ex-
tra term needs to be estimated is −DKL[q(θ)||p(θ)]. Note
that, introducing q(θ) will double the number of parameters.
In the case of Bayesian NN as an IP, where θ contains means
and variances for weight priors, then a simple Gaussian q(θ)
will need two sets of means and variances variational param-
eters (i.e., posterior means of means, posterior variances of
means,posterior means of variances, posterior variances of
variances). Therefore, to make the representation compact,
we choose q(θ) to be a Dirac-delta function δ(θq), which
results in an empirical Bayesian solution.

Another possible alternative approach is, instead of explic-
itly specifying the form and hyperparameters for p(θ),we
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can notice that from standard variational lower bound

log qGP(y|X) ≈ Eq(θ)[log qGP(y|X, θ)]−DKL[q(θ)||p(θ)].

Then DKL[q(θ)||p(θ)] can be approximated by

−DKL[q(θ)||p(θ)] ≈ −Eq(θ)[log qGP(y|X, θ)] + constant
= − log qGP(y|X, θq) + constant

Therefore, we can use − log qGP(y|X, θq) as the regular-
ization term instead, which penalizes the parameter con-
figurations that returns a full marginal log likelihood (as
opposed to the diagonal likelihood in the original BB-α
energy 1

α

∑N
n logEq(z)q(θ)qGP(yn|xn, z, θ)α) that is too

high, especially the contribution from non-diagonal covari-
ances. We refer this as likelihood regularization. In practice,
− log qGP(y|X, θq) is estimated on each mini-batch.

D KL divergence on function space v.s. KL
divergence on weight space

We briefly discuss KL divergence on function space in finite
dimensional case. In the sleep phase of VIP, we have pro-
posed minimizing the following KL divergence in function
space:

U(m,K) = DKL[p(y, f |X, θ)||qGP(y, f |X,m,K)].
(D.1)

This is an example of KL divergence in function space
(i.e., the output f ). Generally speaking, we may as-
sume that p(f) =

∫
W
p(f |W)p(W)dW, and q(f) =∫

W
p(f |W)q(W), where q(W) is weight-space variational

approximation. That is to say, both stochastic processes p
and q can be generated by finite dimensional weight space
representation W. This can be seen as a one-step Markov
chain with preivious state st = W, new state st+1 = f , and
probability transition function r(st+1|st) = p(f |W). Then,
by applying the second law of thermodynamics of Markov
chains(Cover & Thomas (2012)), we have:

DKL[p(f)||q(f)] ≤ DKL[p(W)||q(W)] (D.2)

This shows that the KL divergence in function space forms
a tighter bound than the KL divergence on weight space,
which is one of the merits of function space inference.

E Further discussions on Bayesian neural
networks

We provide a comparison between our kernel in equation
(6), and the kernel proposed in Gal & Ghahramani (2016a).
Notably, consider the following Gaussian process:

y(·) ∼ GP(0,KVDO(·, ·)),

KVDO(x1,x2) =∫
p(w)p(b)σ(w>x1 + b)σ(w>x2 + b)dwdb. (E.1)

Here σ(·) is a non-linear activation function, w is a vector of
lengthD, b is the bias scaler, and p(w), p(b) the correspond-
ing prior distributions. Gal & Ghahramani (2016a) consid-
ered approximating this GP with a one-hidden layer BNN
ŷ(·) = BNN(·, θ) with θ collecting the weights and bias
vectors of the network. Denote the weight matrix of the first
layer asW ∈ RD×K , i.e. the network has K hidden units,
and the kth column ofW as wk. Similarly the bias vector is
b = (b1, ..., bK). We further assume the prior distributions
of the first-layer parameters are p(W ) =

∏K
k=1 p(wk) and

p(b) =
∏K
k=1 p(bk), and use mean-field Gaussian prior for

the output layer. Then this BNN constructs an approxima-
tion to the GP kernel as:

K̃VDO(x1,x2) =
1

K

∑
k

σ(w>k x1 + bk)σ(w>k x2 + bk),

wk ∼ p(w), bk ∼ p(b).

This approximation is equivalent to the empirical estimation
(6), if S = K and the IP is defined by

gθ(x, z) = σ(w>x + b), z = {w, b}, p(z) = p(w)p(b),

p(z), σ(·) satisfy Ep(z)[σ(w>x + b)] = 0.
(E.2)

In such case, the output layer of that one-hidden layer BNN
corresponds to the Bayesian linear regression “layer” in
our final approximation. However, the two methods are
motivated in different ways. Gal & Ghahramani (2016a)
used this interpretation to approximate a GP with kernel
(E.1) using a one-hidden layer BNN, while our goal is to
approximate the IP E.2 by a GP (note that the IP is defined
as the output of the hidden layer, not the output of the BNN).
Also this coincidence only applies when the IP is defined by
a Bayesian logistic regression model, and our approximation
is applicable to BNN and beyond.

F Further experimental details
We provide further experimental details in this section. We
opensource the code of VIP for UCI experiments at https:
//github.com/LaurantChao/VIP.

F.1 General settings for VIP

For small datasets we use the posterior GP equations for
prediction, otherwise we use the O(S3) approximation. We
use S = 20 for VIP unless noted otherwise. When the
VIP is equipped with a Bayesian NN/LSTM as prior over
functions (Example 3-4), the prior parameters over each
weight are untied, thus can be individually tuned. Empirical

https://github.com/LaurantChao/VIP
https://github.com/LaurantChao/VIP
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Bayesian estimates of the prior parameters are used in 4.3
and 4.4.

F.2 Further experimental details of synthetic example

The compositional kernel for GP is the summation of RBF
and Periodic kernels. In this toy experiment, both VDO
and VIP use a BNN as the underlying model. Note that
it appears that the GP slightly overfits. It is possible to
hand-pick the kernel parameters for a smoother fit of GP.
However, we have found that quantitatively this will result
in a decrease in test predictive likelihood and an increase of
RMSE. Therefore, we chose to optimize the kernel parame-
ters by maximizing the marginal likelihood.

F.3 Further implementation details for multivariate
regression experiments

• Variational Gaussian inference for BNN (VI-BNN):
we implement VI for BNN using the Bayesian deep
learning library, ZhuSuan (Shi et al., 2017). VI-BNN
employs a mean-field Gaussian variational approxima-
tion but evaluates the variational free energy using the
reparameterisation trick (Kingma & Welling, 2013).
We use a diagonal Gaussian prior for the weights and
fix the prior variance to 1. The noise variance of the
Gaussian noise model is optimized together with the
means and variances of the variational approximation
using the variational free energy.

• Variational implicit process-Neural Sampler regressor
(VIP-NS): we use neural sampler with two hidden lay-
ers of 10 hidden units. The input noise dimension is
10 or 50, which is determined using validation set.

• Variational dropout (VDO) for BNN: similar to Gal &
Ghahramani (2016a), we fix the length scale parameter
0.5 ∗ l2 = 10e−6. Since the network size is relatively
small, dropout probability is set as 0.005 or 0.0005.
We use 2000 forward passes to evaluate posterior like-
lihood.

• α-dropout inference for BNN: suggested by Li & Gal
(2017), we fix α = 0.5 which often gives high quality
uncertainty estimations, possibility due to it is able to
achieve a balance between reducing training error and
improving predictive likelihood. We use K = 10 for
MC sampling.

• Variational sparse GPs and exact GPs: we implement
the GP-related algorithms using GPflow (Matthews
et al., 2017). variational sparse GPs uses 50 inducing
points. Both GP models use the RBF kernel.

• About noise variance parameter grid search for VIPs
(VIP-BNN and VIP-NS), VDOs and α-dropout: we

start with random noise variance parameter, run opti-
mization on the model parameters, and then perform
a (thick) grid search over noise variance parameter on
validation set. Then, we train the model on the entire
training set using this noise variance parameter value.
This coordinate ascent like procedure does not require
training the model for multiple times as in Bayesian
optimization, therefore can speed up the learning pro-
cess. The same procedure is used to search for optimal
hyperparameter ψ of the inverse-Wishart process of
VIPs.

F.4 Additional implementation details for ABC
experiment

Following the experimental setting of Papamakarios & Mur-
ray (2016), we set the ground truth L-V model parameter to
be θ1 = 0.01, θ2 = 0.5, θ3 = 1.0, θ4 = 0.01. We simulate
population data in the range of [0, 30] with step size 0.05,
which result in 600 gathered measurements. We use the
first 500 measurements as training data, and the remaining
as test set. For MCMC-ABC and SMC-ABC setup, we
also follow the implementation of Papamakarios & Murray
(2016).3 MCMC-ABC is ran for 10000 samples with toler-
ance ε set to be 2.0 which is manually tuned to give the best
performance. In MCMC-ABC, last 100 samples are taken
as samples. Likewise SMC-ABC uses 100 particles. Model
likelihood is calculated based on Gaussian fit. VIP (α = 0)
is trained for 10000 iterations with Adam optimizer using
0.001 learning rate.

F.5 Additional implementation details for predicting
power conversion efficiency of organic
photovoltaics molecules

For Bayesian LSTMs, we put Gaussian prior distributions
over LSTM weights. The output prediction is defined as
the final output at the last time step of the input sequence.
We use S = 10 for VIP. All methods use Adam with a
learning rate of 0.001 for stochastic optimization. Noise
variance parameter are not optimized, but set to suggested
value according to Hernández-Lobato et al. (2016).To match
the run time of the fingerprint-based methods, all LSTM
methods are trained for only 100 epochs with a batch size
of 250. Among different models in the last few iterations
of optimization, we choose the one with the best training
likelihood for testing. Note that in the original paper of vari-
ational dropout and α-dropout inference, K sample paths
(K = 1 for VDO and K = 10 for α-dropout) are created
for each training data, which is too prohibitive for memory
storage. Therefore, in our implementation, we enforce all
training data to share K sample paths. This approximation

3https://github.com/gpapamak/epsilon_
free_inference

https://github.com/gpapamak/epsilon_free_inference
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is accurate since we use a small dropout rate, which is 0.005.

F.6 Additional Tables

Table 4: Interpolation performance on toy dataset.
Method VIP VDO GP

Test NLL -0.60±0.01 −0.07± 0.01 −0.27± 0.00
Test RMSE 0.140±0.00 0.161±0.00 0.152±0.00

Table 5: Interpolation performance on solar irradiance.
Method VIP VDO SVGP GP

Test NLL 0.08±0.02 0.21± 0.04 0.56± 0.23 0.832±0.00
Test RMSE 0.28±0.00 0.29±0.01 0.55±0.08 0.650±0.0

Table 6: Performance on clean energy dataset
Metric VIP VDO-LSTM α-LSTM BB-α VI-BNN FITC-GP EP-DGP
Test NLL 0.65±0.01 1.24±0.01 2.06±0.02 0.74±0.01 1.37±0.02 1.25±0.00 0.98±0.00
Test RMSE 0.88±0.02 0.93±0.01 1.38±0.02 1.08±0.01 1.07±0.01 1.35±0.00 1.17±0.00


