
ar
X

iv
:1

60
2.

04
13

3v
1 

 [s
ta

t.M
L]

  1
2 

F
eb

 2
01

6

Deep Gaussian Processes for Regression using Approximate
Expectation Propagation

Thang D. Bui
University of Cambridge
tdb40@cam.ac.uk

Daniel Hernández-Lobato
Universidad Autónoma de Madrid
daniel.hernandez@uam.es

Yingzhen Li
University of Cambridge
yl494@cam.ac.uk
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Abstract

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of Gaussian pro-
cesses (GPs) and are formally equivalent to neural networkswith multiple, infinitely wide hidden
layers. DGPs are nonparametric probabilistic models and assuch are arguably more flexible, have
a greater capacity to generalise, and provide better calibrated uncertainty estimates than alterna-
tive deep models. This paper develops a new approximate Bayesian learning scheme that enables
DGPs to be applied to a range of medium to large scale regression problems for the first time. The
new method uses an approximate Expectation Propagation procedure and a novel and efficient ex-
tension of the probabilistic backpropagation algorithm for learning. We evaluate the new method
for non-linear regression on eleven real-world datasets, showing that it always outperforms GP
regression and is almost always better than state-of-the-art deterministic and sampling-based ap-
proximate inference methods for Bayesian neural networks.As a by-product, this work provides
a comprehensive analysis of six approximate Bayesian methods for training neural networks.

1 Introduction

Gaussian Processes (GPs) are powerful nonparametric distributions over continuous functions that
can be used for both supervised and unsupervised learning problems (Rasmussen & Williams, 2005).
In this article, we study a multi-layer hierarchical generalisation of GPs or deep Gaussian Processes
(DGPs) (Damianou & Lawrence, 2013) for supervised learning tasks. A GP is equivalent to an in-
finitely wide neural network with single hidden layer and similarly a DGP is a multi-layer neural
network with multiple infinitely wide hidden layers (Neal, 1995). The mapping between layers in this
type of network is parameterised by a GP, and, as a result, DGPs retain useful properties of GPs such
as nonparametric modelling power and well-calibrated predictive uncertainty estimates. In addition,
DGPs employ a hierarchical structure of GP mappings and therefore are arguably more flexible, have
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a greater capacity to generalise, and are able to provide better predictive performance (Damianou,
2015). This family of models is attractive as it can also potentially discover layers of increasingly
abstract data representations, in much the same way as theirdeep parametric counterparts, but it can
also handle and propagate uncertainty in the hierarchy.

The addition of non-linear hidden layers can also potentially overcome practical limitations of
shallowGPs. First, modelling real-world complex datasets often requires rich, hand-designed covari-
ance functions. DGPs can perform input warping or dimensionality compression or expansion, and
automatically learn to construct a kernel that works well for the data at hand. As a result, learning in
this model provides a flexible form of Bayesian kernel design. Second, the functional mapping from
inputs to outputs specified by a DGP is non-Gaussian which is amore general and flexible modelling
choice. Third, DGPs can repair damage done by sparse approximations to the representational power
of each GP layer. For example, pseudo datapoint based approximation methods for DGPs trade model
complexity for a lower computational complexity ofO(NLM2) whereN is the number of datapoints,
L is the number of layers, andM is the number of pseudo datapoints. This complexity scales quadrat-
ically in M whereas the dependence on the number of layersL is only linear. Therefore, it can be
cheaper to increase the representation power of the model byadding extra layers rather than by adding
more pseudo datapoints.

The focus of this paper is Bayesian learning of DGPs, which involves inferring the posterior
over the layer mappings and hyperparameter optimisation via the marginal likelihood. Unfortunately,
exact Bayesian learning in this model is analytically intractable and as such approximate inference is
needed. Current proposals in the literature do not scale well and have not been compared to alternative
deep Bayesian models. We will first review the model and past work in Section 2, and then make the
following contributions:

• We propose a new approximate inference scheme for DGPs for regression, using a sparse GP ap-
proximation, a novel approximate Expectation Propagationscheme and the probabilistic backpropa-
gation algorithm, resulting in a computationally efficient, scalable and easy to implement algorithm
(Sections 3, 4 and 5).

• We demonstrate the validity of our method in supervised learning tasks on various medium to large
scale datasets and show that the proposed method is always better than GP regression and is almost
always better than state-of-the-art approximate inference techniques for multi-layer neural networks
(Section 8).

2 Deep Gaussian processes

We first review DGPs and existing literature on approximate inference and learning for DGPs. Sup-
pose we have a training set comprising ofN D-dimensional input and observation pairs(xn, yn). For
ease of presentation, the outputs are assumed to be real-valued scalars, but other types of data can
be easily accommodated1. The probabilistic representation of a DGP comprising ofL layers can be
written as follows,

p(fl|θl) = GP(fl;0,Kl), l = 1, · · · , L
p(hl|fl,hl−1, σ

2
l ) =

∏

n

N (hl,n; fl(hl−1,n), σ
2
l ), h1,n = xn

1We also discuss how to handle non-Gaussian likelihoods in the supplementary material.
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Figure 1: A deep GP example that has two GP layers and one 2-D hidden layer. The training output
is the state values of the mountain car problem. The left graphs show latent functions in each layer,
two functions in the first layer and one in the second layer, learnt by using the proposed approach.
The right graph shows the training data [top] and the predictions of the overall function mapping from
inputs to outputs made by a GP [middle] and the DGP on the left [bottom].

p(y|fL,hL−1, σ
2
L) =

∏

n

N (yn; fL(hL−1,n), σ
2
L)

where hidden layers2 are denotedhl,n and the functions in each layer,fl. More formally, we place a
zero mean GP prior over the mappingfl, that is, given the inputs tofl any finite set of function values
are distributed under the prior according to a multivariateGaussianp(fl) = N (f ;0,Kff ). Note that
these function values and consequently the hidden variables are not marginally normally distributed,
as the inputs are random variables. WhenL = 1, the model described above collapses back to GP
regression or classification. When the inputs{xn} are unknown and random, the model becomes a
DGP latent variable model, which has been studied inDamianou & Lawrence(2013).

An example of DGPs whenL = 2 anddim(h1) = 2 is shown in Figure 1. We use this network
with the proposed approximation and training algorithm to fit a value function of the mountain car
problem (Sutton & Barto, 1998) from a small number of noisy evaluations. This function is particu-
larly difficult for models such as GP regression with a standard exponentiated quadratic kernel due to
a steep value function cliff, but is well handled by a DGP with only two GP layers. Interestingly the
functions in the first layer are fairly simple and learn to cover or explain different parts of the input
space.

2Hidden variables in the intermediate layers can and will generally have multiple dimensions but we have omitted this
here to lighten the notation.

3



We are interested in inferring the posterior distribution over the latent function mappings and the
intermediate hidden variables, as well as obtaining a marginal likelihood estimate for hyperparameter
tuning and model comparison. Due to the nonlinearity in the hierarchy, these quantities are analyti-
cally intractable. As such, approximate inference is required. The simplest approach is to obtain the
maximum a posterioriestimate of the hidden variables (Lawrence & Moore, 2007). However, this
procedure is prone to over-fitting and does not provide uncertainty estimates. An alternative existing
approach is based on a variational-free-energy method proposed byDamianou & Lawrence(2013),
extending the seminal work on variational sparse GPs byTitsias(2009). In this scheme, a variational
approximation over both latent functions and hidden variables is chosen such that a free energy is both
computationally and analytically tractable. Critically,as a variational distribution over the hidden
variables is used in this approach, in addition to one over the inducing outputs, the number of varia-
tional parameters increases linearly with the number of training datapoints which hinders the use of
this method for large scale datasets. Furthermore, initialisation for this scheme is a known issue, even
for a modest number of datapoints (Turner & Sahani, 2011). An extension ofDamianou & Lawrence
(2013) that has skip links from the inputs to every hidden layer in the network was proposed inDai
et al.(2015), based on suggestions provided inDuvenaud et al.(2014). Recent work byHensman &
Lawrence(2014) introduces a nested variational scheme that only requiresa variational distribution
over the inducing outputs, removing the parameter scaling problem ofDamianou & Lawrence(2013).
However, both approaches ofDai et al.(2015) andHensman & Lawrence(2014) have not been fully
evaluated on benchmark supervised learning tasks or on medium to large scale datasets, nor compared
to alternative deep models.

A special case of DGPs whenL = 2 and the sole hidden layerh1 is only one dimensional is warped
GPs (Snelson et al., 2004; Lázaro-Gredilla, 2012). In Lázaro-Gredilla(2012) a variational approach,
in a similar spirit toTitsias(2009) andDamianou & Lawrence(2013), was used to jointly learn the
latent functions. In contrast, the latent function in the second layer is assumed to be deterministic and
parameterised by a small set of parameters inSnelson et al.(2004), which can be learnt by maximising
the analytically tractable marginal likelihood. However,the performance of warped GPs is often
similar to a standard GP, most likely due to the narrow bottleneck in the hidden layer.

Our work differs substantially from the above and introduces an alternative approximate inference
scheme for DGPs based on three approximations. First, in order to sidestep the cubic computational
cost of GPs we leverage a well-known pseudo point sparse approximation (Snelson & Ghahramani,
2006; Quiñonero-Candela & Rasmussen, 2005). Second, an approximation to the Expectation Prop-
agation (EP) energy function (Seeger, 2007), a marginal likelihood estimate, is optimised directly to
find an approximate posterior over the inducing outputs. Third, the optimisation demands analytically
intractable moments that are approximated by nesting Assumed Density Filtering (Hernández-Lobato
& Adams, 2015). The proposed algorithm is not restricted to the warped GP case and is applicable to
non-Gaussian observation models.

The complexity of our method is similar to that of the variational approach proposed inDamianou
& Lawrence(2013), O(NLM2), but is much less memory intensive,O(LM2) vs. O(NL+ LM2).
These costs are competitive to those of the nested variational approach inHensman & Lawrence
(2014).
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3 The Fully Independent Training Conditional approximation

The computational complexity of full GP models scales cubically with the number of training in-
stances, making it intractable in practice. Sparse approximation techniques are therefore often nec-
essary. They can be coarsely put into two classes: ones that explicitly sparsify and create a semi-
parametric representation that approximates the originalmodel, and ones that retain the original non-
parametric properties and perform sparse approximation tothe exact posterior. The method used here,
Fully Independent Training Conditional (FITC), falls intothe first category. The FITC approxima-
tion is formed by considering a small set ofM function valuesu in the infinite dimensional vector
f and assuming conditional independence between the remaining values given the setu (Snelson &
Ghahramani, 2006; Quiñonero-Candela & Rasmussen, 2005). This set is often called inducing outputs
or pseudo targets and their input locationsz can be chosen by optimising the approximate marginal
likelihood. The resulting model can be written as follows,

p(ul|θl) = N (ul;0,Kul−1,ul−1
), l = 1, · · · , L

p(hl|ul,hl−1, σ
2
l ) =

∏

n

N (hl,n;Cn,lul,Rn,l),

p(y|uL,HL−1, σ
2
L) =

∏

n

N (yn;Cn,LuL,Rn,L).

whereCn,l = Khl,n,ul
K−1

ul,ul
andRn,l = Khl,n,hl,n

−Khl,n,ul
K−1

ul,ul
Kul,hl,n

+ σ2l I. Note that the
function outputs index the covariance matrices, for exampleKhl,n,ul

denotes the covariance between
hl,n andul, and takeshl−1,n andzl as inputs respectively. This is important when propagatingun-
certainty through the network. The FITC approximation creates a semi-parametric model, but one
which is cleverly structured so that the induced non-stationary noise captures the uncertainty intro-
duced from the sparsification. The computational complexity of inference and hyperparameter tuning
in this approximate model isO(NM2) which meansM needs to be smaller thanN to provide any
computational gain (i.e. the approximation should be sparse). The quality of the approximation largely
depends on the number of inducing outputsM and the complexity of the underlying function, i.e. if
the function’s characteristic lengthscale is small,M needs to be large and vice versa. AsM tends to
N andz = X, i.e. the inducing inputs and training inputs are shared, the approximate model reverts
back to the original GP model. The graphical model is shown inFigure 2 [left].

4 Approximate Bayesian inference via EP

Having specified a probabilistic model for data using a deep sparse Gaussian processes we now
consider inference for the inducing outputsu = {ul}Ll=1 and learning of the model parameters
α = {zl, θl}Ll=1. The posterior distribution over the inducing outputs can be written asp(u|X,y) ∝
p(u)

∏

n p(yn|u,Xn). This quantity can then be used for output prediction given atest input,p(y∗|x∗,X,y) =
∫

du p(u|X,y) p(y∗|u,x∗). The model hyperparameters can be tuned by maximising the marginal
likelihoodp(y|α) =

∫

dudh p(u,h) p(y|u,h, α). However, both the posterior ofu and the marginal
likelihood are not analytically tractable when there is more than one GP layer in the model. As such,
approximate inference is needed; here we make use of the EP energy function with a tied factor con-
straint similar to that proposed in the Stochastic Expectation Propagation (SEP) algorithm (Li et al.,
2015) to produce a scalable, convergent approximate inference method.
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Figure 2: Left: The graphical model of our DGP-FITC model where the inducing outputs{ul} play
a role of global parameters. Right: A Gaussian moment-matching procedure to computelogZ. The
bottom arrows denote the value of the observation and the left and right graphs [before and after
an update respectively] show how the algorithm makes the final propagated Gaussian fit to the data,
i.e. the model is trained so that training points are more probable after each update. The red curves
show the distribution over hidden variables before being approximated by a Gaussian in blue. Best
viewed in colour.

4.1 EP, Stochastic EP and the EP approximate energy

In EP (Minka, 2001), the approximate posterior is assumed to beq(u) ∝ p(u)
∏

n t̃n(u) where
{t̃n(u)}Nn=1 are the approximate data factors. Each factor approximately captures the contribution
of datapointnmakes to the posterior and, in this work, they take an unnormalised Gaussian form. The
factors can be found by running an iterative procedure whichoften requires several passes through
the training set for convergence3. The EP algorithm also provides an approximation to the marginal
likelihood,

log p(y|α) ≈ F(α) = φ(θ)− φ(θprior) +
N
∑

n=1

log Z̃n

where log Z̃n = logZn + φ(θ\n)− φ(θ),

whereθ, θ\n andθprior are the natural parameters ofq(u), the cavityq\n(u) [q\n(u) ∝ q(u)/t̃n(u)]
andp(u) respectively,φ(θ) is the log normaliser of a Gaussian distribution with natural parameters
θ, andlogZn = log

∫

du q\n(u) p(yn|u,Xn) (Seeger, 2007). Unfortunately, EP is not guaranteed to
converge, but if it does, the fixed points lie at the stationary points of the EP energy, which is given
by −F(α). Furthermore, EP requires the approximate factors to be stored in memory, which has a
cost ofO(NLM2) in this application as we need to store the mean and the covariance matrix for each
factor.

3We summarise the EP steps in the supplementary material.
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4.2 Direct EP energy minimisation with a tied factor constraint

In order to reduce the expensive memory footprint of EP, the data-factors are tied. That is the posterior
p(u|X,y) is approximated byq(u) ∝ p(u)g(u)N , where the factorg(u) could be thought of as an
averagedata factor that captures the average effect of a likelihoodterm on the posterior. Approxima-
tions of this form were recently used in the SEP algorithm (Li et al., 2015) and although seemingly
limited, in practice were found to perform almost as well as full EP while significantly reducing EP’s
memory requirement, fromO(NLM2) toO(LM2) in our case.

The original SEP work devised modified versions of the EP updates appropriate for the new form
of the approximate posterior. Originally we applied this method to DGPs (details of this approach in-
cluding hyperparameter optimisation are included in the supplementary material). However, an alter-
native approach was found to have superior performance, which is to optimise the EP energy function
directly (for both the approximating factors and the hyperparameters). Normally, optimisation of the
EP energy requires a double-loop algorithm, which is computationally inefficient, however the use of
tied factors simplifies the approximate marginal likelihood and allows direct optimisation. The energy
becomes,

F(α) = φ(θ)− φ(θprior) +
N
∑

n=1

[

logZn + φ(θ\1)− φ(θ)
]

= (1−N)φ(θ) +Nφ(θ\1)− φ(θprior) +
N
∑

n=1

logZn

since the cavity distributionq\n(u) ∝ q(u)/t̃n(u) = q(u)/g(u) = q\1(u) is the same for all training
points. This elegantly removes the need for a double-loop algorithm, since we can posit a form for
the approximate posterior and optimise the above approximate marginal likelihood directly. However,
it is important to note that, in general, optimising this objective will not give the same solution as
optimising the full EP energy. The new energy produces an approximation formed by averaging the
moments ofq\1(u) p(yn|u,xn) over datapoints, whereas EP averages natural parameters, which is
arguably more sensible but less tractable.

In detail, we assume the tied factor takes a Gaussian form with natural parametersθ1. As a result,
the approximate posterior and the cavity are also Gaussian with natural parametersθ = θprior +Nθ1
andθ\1 = θprior + (N − 1)θ1 respectively. This means that we can compute the first three terms in
the energy function exactly. However, it remains to computelogZn = log

∫

du q\1(u) p(yn|u,xn)
which we will discuss next.

5 Probabilistic backpropagation for deep Gaussian processes

ComputinglogZn in the objective function above is analytically intractable forL ≥ 1 since the likeli-
hood given the inducing outputsu is nonlinear and the propagation of the Gaussian cavity through each
layer results in a complex distribution. However, for certain choices of covariance functions{Kl}Ll=1,
it is possible to use an efficient and accurate approximationwhich propagates a Gaussian through
the first layer of the network and projects this non-Gaussiandistribution back to a moment matched
Gaussian before propagating through the next layer and repeating the same steps. This scheme is an
algorithmic identical to Assumed Density Filtering and a central part of the probabilistic backprop-
agation algorithm that has been applied to standard neural networks (Hernández-Lobato & Adams,
2015).
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The aim is to computelogZ and its gradients with respect to the parameters such asθ1 or the hy-
perparameters of the model4. By reintroducing the hidden variables in the middle layers, we perform
a Gaussian approximation toZ in a sequential fashion, as illustrated in Figure 2 [right].We take a two
layer case as a running example:

Z =

∫

du p(y|x,u) q\1(u)

=

∫

dh1 du2 p(y|h1,u2) q
\1(u2)

∫

du1 p(h1|x,u1) q
\1(u1)

One key difference between our approach and the variationalfree energy method ofDamianou &
Lawrence(2013) is that our algorithm does not retain an explicit approximate distribution over the
hidden variables. Instead, we approximately integrate them out when computinglogZ as follows.

First, we can exactly marginalise out the inducing outputs for each GP layer, leading toZ =
∫

dh1 q(y|h1) q(h1) whereq(h1) = N (h1;m1, v1), q(y|h1) = N (y|h1;m2|h1
, v2|h1

) and

m1 = Kh1,u1
K−1

u1,u1
m

\1
1 ,

v1 = σ21 +Kh1,h1
−Kh1,u1

K−1
u1,u1

Ku1,h1
+Kh1,u1

K−1
u1,u1

V
\1
1 K−1

u1,u1
Ku1,h1

,

m2|h1
= Kh2,u2

K−1
u2,u2

m
\1
2 ,

v2|h1
= σ22 +Kh2,h2

−Kh2,u2
K−1

u2,u2
Ku2,h2

+Kh2,u2
K−1

u2,u2
V

\1
1 K−1

u2,u2
Ku2,h2

.

Following (Girard et al., 2003; Barber & Schottky, 1998; Deisenroth & Mohamed, 2012), we can
use the law of iterated conditionals to approximate the difficult integral in the equation above by a
GaussianZ ≈ N (y|m2, v2) where the mean and variance take the following form,

m2 = Eq(h1)[m2|h1
]

v2 = Eq(h1)[v2|h1
] + varq(h1)[m2|h1

]

which results in

m2 = Eq(h1)[Kh2,u2
]A

v2 = σ22 +Eq(h1)[Kh2,h2
] + tr

(

BEq(h1)[Ku2,h2
Kh2,u2

]
)

−m2
2

whereA = K−1
u2,u2

m
\1
2 andB = K−1

u2,u2
(V

\1
2 +m

\1
2 m

\1,T
2 )K−1

u2,u2
−K−1

u2,u2
. The equations above

require the expectations of the kernel matrix under a Gaussian distribution over the inputs, which are
analytically tractable for widely used kernels such as exponentiated quadratic, linear or a more general
class of spectral mixture kernels (Titsias & Lawrence, 2010; Wilson & Adams, 2013). In addition, the
approximation above can be improved for networks that have multidimensional intermediate variables,
by using a Gaussian with a non-diagonal covariance matrix. We discuss this in the supplementary
material.

As the mean and variance of the Gaussian approximation in each intermediate layer can be com-
puted analytically, their gradients with respect to the mean and variance of the input distribution,
as well as the parameters of the current layers are also available. Since we require the gradients of
the approximation tologZ, we need to store these results in the forward propagation step, compute

4We ignore the data index here to lighten the notation
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the approximatelogZ and its gradients at the output layer and use the chain rule inthe backward
step to differentiate through the ADF procedure. This procedure is reminiscent of the backpropaga-
tion algorithm in standard parametric neural networks, hence the nameprobabilistic backpropagation
(Hernández-Lobato & Adams, 2015).

6 Stochastic optimisation for scalable training

The propagation and moment-matching as described above costsO(LM2) and needs to be repeated
for all datapoints in the training set in batch mode, resulting in an overall complexity ofO(NLM2).
Fortunately, the last term of the objective in Section 4.2 isa sum of independent terms, i.e. its com-
putation can be distributed, resulting in a substantial decrease in computational cost. Furthermore,
the objective is suitable for stochastic optimisation. In particular, an unbiased noisy estimate of the
objective and its gradients can be obtained using a minibatch of training datapoints,

F ≈ −(N − 1)φ(θ) +Nφ(θ\1)− φ(θprior) +
N

|B|

|B|
∑

b=1

logZb,

where|B| denotes the minibatch size.

7 Approximate predictive distribution

Given the approximate posterior and a new test inputx∗, we wish to make a prediction about the test
outputy∗. That is to findp(y∗|x∗,X,Y) ≈

∫

du p(y∗|x∗,u) q(u|X,Y). This predictive distribution
is not analytically tractable, but fortunately, we can approximate it by a Gaussian in a similar fashion
to the method described in Section 5. That is, a single forward pass is performed, in which each layer
takes in a Gaussian distribution over the input, incorporates the approximate posterior of the inducing
outputs and approximates the output distribution by a Gaussian. An alternative to obtain the prediction
is to forward sample from the model, but we do not use this approach in the experiments.

8 Experiments

We implement and compare the proposed approximation schemeto state-of-the-art methods for Bayesian
neural networks. We first detail our implementation in Section 8.1 and then discuss the experimental
results in Sections 8.2 and 8.3.

8.1 Experimental details

In all the experiments reported here, we use Adam with the default learning rate (Kingma & Ba, 2015)
for optimising our objective function. We use an exponentiated quadratic kernel with ARD length-
scales for each layer. The hyperparameters and pseudo pointlocations are different between functions
in each layer. The lengthscales and inducing inputs of the first GP layer are sensibly initialised based
on the median distance between datapoints in the input spaceand the k-means cluster centers respec-
tively. We use long lengthscales and initial inducing inputs between[−1, 1] for the higher layers to
force them to start with an identity mapping. We parameterise the natural parameters of the average
factor and initialise them with small random values. We evaluate the predictive performance on the
test set using two popular metrics: root mean squared error (RMSE) and mean log likelihood (MLL).
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Figure 3: Average predictive log likelihood of existing approaches for BNNs and GPs, and the pro-
posed method for DGPs, across 10 datasets. The higher the better, and best viewed in colour. Full
results are included in the supplementary material.

8.2 Regression on UCI datasets

We validate the proposed approach for training DGPs in regression experiments using several datasets
from the UCI repository. In particular, we use the ten datasets and train/test splits used inHernández-
Lobato & Adams(2015) andGal & Ghahramani(2015): 1 split for theyeardataset [N ≈ 500000,D =
90], 5 splits for theproteindataset [N ≈ 46000,D = 9], and 20 for the others.

We compare our method (FITC-DGP) against sparse GP regression using FITC (FITC-GP) and
Bayesian neural network (BNN) regression using several state-of-the-art deterministic and sampling-
based approximate inference techniques. As baselines, we include the results for BNNs reported
in Hernández-Lobato & Adams(2015), BNN-VI(G)-1 and BNN-PBP-1, and inGal & Ghahramani
(2015), BNN-Dropout-1. The results reported for these methods are for networks with one hidden
layer of 50 units (100 units forprotein andyear). Specifically, BNN-VI(G) uses a mean-field Gaus-
sian approximation for the weights in the network, and obtains the stochastic estimates of the bound
and its gradient using a Monte Carlo approach (Graves, 2011). BNN-PBP employs Assumed Density
Filtering and the probabilistic backpropagation algorithm to obtain a Gaussian approximation for the
weights (Hernández-Lobato & Adams, 2015). BNN-Dropout is a recently proposed technique that
employsdropoutduring training as well as at prediction time, that is to average over several predic-
tions, each made by the entire network with a random proportion of the weights set to zero (Gal &
Ghahramani, 2015). We implement other methods as follows,

• DGP: we evaluate three different architectures of DGPs, each with two GP layers and one hidden
layer of one, two and three dimensions respectively (DGP-1,DGP-2 and DGP-3). We include the
results for two settings of the number of inducing outputs,M = 50 andM = 100 respectively.
Note that for the bigger datasetsprotein andyear, we useM = 100 andM = 200 but do not
annotate this in Figure 3. We choose these settings to ensurethe run time for our method is smaller
or comparable to that of other methods for BNNs.

10



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLL Average Rank

PBP−1
Dropout−1
SGLD−1
DGP−1 50
SGLD−2
VI(KW)−1
GP 50

DGP−3 100
DGP−2 100

DGP−3 50
DGP−2 50

GP 100
HMC−1

VI(KW)−2
DGP−1 100

CD

Figure 4: The average rank of all methods across the datasets
and their train/test splits, generated based onDemšar(2006).
See the text for more details.
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Figure 5: MLL and RMSE results
for the photovoltaic molecule re-
gression experiment.

• GP: we use the same number of pseudo datapoints as in DGP (GP 50and GP 100).

• BNN-VI(KW): this method, similar toGraves(2011), employs a mean-field Gaussian variational
approximation but evaluates the variational free energy using thereparameterisation trickproposed
in Kingma & Welling (2014). We use a diagonal Gaussian prior for the weights and fix the prior
variance to 1. The noise variance of the Gaussian noise modelis optimised together with the means
and variances of the variational approximation using the variational free energy. We test two dif-
ferent network architectures with the rectified linear activation function, and one and two hidden
layers, each of 50 units (100 for the two big datasets), denoted by VI(KW)-1 and VI(KW)-2 respec-
tively.

• BNN-SGLD: we reuse the same networks with one and two hidden layers as with VI(KW) and
approximately sample from the posterior over the weights using Stochastic Gradient Langevin Dy-
namics (SGLD) (Welling & Teh, 2011). We place a diagonal Gaussian prior over the weights, and
parameterise the observation noise variance asσ2 = log(1 + exp(κ)), a broad Gaussian prior over
κ and sampleκ using the same SGLD procedure. Two step sizes, one for the weights and one for
κ, were manually tuned for each dataset. We use Autograd for the implementation of BNN-SGLD
and BNN-VI(KW) (github.com/HIPS/autograd).

• BNN-HMC: We run Hybrid Monte Carlo (HMC) (Neal, 1993) using the MCMCstuff toolbox (Van-
hatalo & Vehtari, 2006) for networks with one hidden layer. We place a Gaussian prior over the net-
work weights and a broad inverse Gamma hyper-prior for the prior variance. We also assume an in-
verse Gamma prior over the observation noise variance. The number of leapfrog steps and step size
are first tuned using Bayesian optimisation using the pybo package (github.com/mwhoffman/pybo).
Note that this procedure takes a long time (e.g. 3 days for protein) and theyeardataset is too large
to be handled in this way.

Figure 3 shows the average test log likelihood (MLL) for a subset of methods with their standard
errors. We exclude methods that perform consistently poorly to improve readability. Full results and
many more comparisons are included in the supplementary material. We also evaluate the average
rank of the MLL performance of all methods across the datasets and their train/test splits and include
the results in Figure 4. This figure is generated using the comparison scheme provided byDemšar
(2006), and shows statistical differences in the performance of the methods. More precisely, if the
gap between the average ranks of any two methods is above the critical distance (shown on the top
right), the two methods’ performances are statistically significantly different. Methods that are not
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significantly different from each other are linked by a solidline. The rank result shows that DGPs
with our inference scheme are the best performing methods overall. Specifically, the DGP-3-100
architecture obtains the best performance on 6 out of 10 datasets and are competitive on the remaining
four datasets. The performance of other DGP variants followclosely with the exception for DGP-1
which is a standard warped GP, the network with one dimensional hidden layer. DGP-1 performs
poorly compared to GP regression, but is still competitive with several methods for BNNs. The results
also strongly indicate that the predictive performance is almost always improved by adding extra
hidden layers or extra hidden dimensions or extra inducing outputs.

The best non-GP method is BNN-VI(KW)-2 which obtains the best performance on three datasets.
However, this method performs poorly on 6 out of 7 remaining datasets, pushing down the correspond-
ing average rank. Despite this, VI(KW) is the best method among all deterministic approximations for
BNNs with one or two hidden layers. Overall, the VI approach without thereparameterisation trick
of Graves, Dropout and PBP perform poorly in comparison and give inaccurate predictive uncertainty.

Sampling based methods such as SGLD and HMC obtain good predictive performance overall,
but often require more tuning compared to other methods. In particular, HMC appears superior on one
dataset, and competitively close to DGP’s performance on three other datasets; however, this method
does not scale to large datasets.

The results for the RMSE metric follow the same trends with DGP-2 and DGP-3 performing as
well or better compared to other methods. Interestingly, BNN-SGLD, despite being ranked relatively
low according to the MLL metric, often provides good RMSE results. Full results are included in the
supplementary material.

8.3 Predicting the efficiency of organic photovoltaic molecules

Having demonstrated the performance of our inference scheme for DGPs, we carry out an additional
regression experiment on a challenging dataset. We obtain asubset of 60,000 organic molecules
and their power conversion efficiency from the Harvard CleanEnergy Project (HCEP) (available at
http://www.molecularspace.org) (Hachmann et al., 2011). We use 50,000 molecules for training and
10,000 for testing. The molecules are represented using 512-dimensional binary feature vectors, which
were generated using the RDKit package, based on the molecular structures in the canonical SMILES
format and a bond radius of 2. The power conversion efficiencyof these molecules was estimated using
density functional theory, determining whether a moleculecould be potentially used as solar cell. The
overall aim of the HCEP is to findorganicmolecules that are as efficient as theirsilicon counterparts.
Our aim here is to show DGPs are effective predictive models that provide good uncertainty estimates,
which can be used for tasks such as Bayesian Optimisation.

We test the method on two DGPs with one hidden layer of 2 and 5 dimensions, denoted by DGP-2
and DGP-5 respectively and each GP is sparsified using 200 inducing outputs. We compare these
against two FITC-GP architectures with 200 and 400 pseudo datapoints respectively. We also repeat
the experiment using a Bayesian neural network with two hidden layers, each of 400 hidden units. We
use the variational approach with thereparameterisation trickof Kingma & Welling(2014) to perform
inference in this model. The noise variance was fixed to 0.16 based on a suggestion inPyzer-Knapp
et al. (2015). Figure 5 shows the predictive performance by five architectures. The DGP with a five
dimensional hidden layer significantly outperforms othersin terms of test MLL, including the shallow
structure with considerably more pseudo datapoints. This result demonstrates the efficacy of DGPs in
providing good predictive uncertainty estimates, even when the kernel used is asimpleexponentiated
quadratic kernel and the input features are binary. Surprisingly, VI(KW), although performing poorly
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as measured by the MLL, makes good predictions for the mean.

9 Summary

This paper has introduced a new and powerful deterministic approximation scheme for DGPs based
upon an approximate EP algorithm and the FITC approximationto sidestep the computational and
analytical intractability. A novel extension of the probabilistic backpropagation algorithm was devel-
oped to address a difficult marginalisation problem in the approximate EP algorithm used. The new
method was evaluated on eleven datasets and compared against a number of state-of-the-art algorithms
for Bayesian neural networks. The results show that the new method for training DGPs is superior on
7 out of 11 datasets considered, and performs comparably on the remainder, demonstrating that DGPs
are a competitive alternative to multi-layer Bayesian neural networks for supervised learning tasks.

The proposed method, in principle, can be applied to classification and unsupervised learning.
However, initial work on classification using DGPs, as included in the supplementary, does not show
a substantial gain over a GP. This issue is potentially related to the diagonal Gaussian approximation
currently used for the hidden layers from the second layer onwards. A non-diagonal approximation
is feasible but more expensive. This can be easily addressedbecause the computation of our training
method can be distributed on GPUs for example, making it evenmore scalable. We will investigate
both problems in future work.
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Appendices

A Extra experimental results

A.1 Regression

Due to the page limitation of the main text, we include here several figures and tables showing the
full experimental results and analyses from the regressionexperiments on 10 UCI datasets. Note that
the results for DGPs reported here could be improved furtherby increasing the number of pseudo
datapoints. We choose 50 and 100 pseudo datapoints (or 100 and 200 for the big datasets) so that the
training time and prediction time are comparable across allmethods. Next we show the full results for
the implemented methods and the their average rank across all train/test splits.

• Figures 6 and 7 show the full MLL results for all methods and all datasets. Part of these results
have been included in the main text. These figures show that DGPs with our approximation
scheme is superior as measured by the MLL metric, obtaining the top spot in the average ranking
table.

• Figures 8 and 9 show the full RMSE results for all methods. Surprisingly, though not doing
well on the MLL metric, i.e. providing inaccurate predictive uncertainty, BNN-SGLD with one
and two layers are very good at predicting the mean of the testset. DGPs, on average, rival or
perform better than this approximate sampling scheme and other methods.

• Figures 10 and 11 show the subset of the MLL results above, forGP architectures, and their
average ranking. This again demonstrate that DGPs are more flexible than GPs, hence always
obtain better predictive performance. The only exception is the network with a one dimensional
hidden layer or a warped GP which performs poorly relative toother architectures.

• Similarly, Figures 12 and 13 show evidence that increasing the number of layers and hidden
dimensions helps improving the accuracy of the predictions.

• We include a similar analysis for approximate inference methods for BNNs in Figures 14, 15,
16 and 17. This set of results demonstrates that VI(KW) and SGLD with two hidden layers
provide good performance on the test sets, outperforming other methods in shallower architec-
tures. HMC with one hidden layer performs well overall, but its running time is much larger
compared to other methods. Other deterministic approximations [VI(G), PBP and Dropout]
perform poorly overall.

Tables 3 and 4 show the average test log-likelihood and errorrespectively for all datasets. The best
deterministic method for each dataset is bolded, the best method overall (deterministic and sampling)
is underlined and emphasised in italic. The average ranks ofthe methods across the 10 datasets are
also included.

A.2 Binary and multiclass classification

We test our approximate inference scheme for DGPs with non-Gaussian noise models. However,
as shown in Tables 1 and 2, DGPs often obtain a marginal gain over GPs, as compared to some
substantial improvement in the regression experiments above. We speculate that this is due to our
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Figure 6: Average test log likelihood for all methods
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Figure 7: The average rank based on the test MLL of all methodsacross the datasets and their train/test
splits, generated based onDemšar(2006). See the main text for more details.

current initialisation strategy and our diagonal Gaussianapproximation at last layer for multiclass
classification. We will follow this up in future work.
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Figure 8: Average test RMSE for all methods
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Figure 9: The average rank based on the test RMSE of all methods across the datasets and their
train/test splits, generated based onDemšar(2006). See the main text for more details.
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Figure 10: Average test log likelihood for GP methods
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Figure 11: The average rank based on the test MLL for GP/DGP models across the datasets and their
train/test splits, generated based onDemšar(2006). See the main text for more details.

Table 1: Binary cla. experiment: Average test log-likelihood/nats

Dataset GP D-1 DGP D-1-1 DGP D-2-1 DGP D-3-1
australian-0.51±0.01-0.51±0.02 -0.51±0.02 -0.53±0.02
breast -0.05±0.01 -0.04±0.01 -0.04±0.01 -0.04±0.01
crabs -0.03±0.01-0.10±0.05 -0.03±0.01 -0.03±0.01
ionoshere -0.17±0.02 -0.17±0.03 -0.16±0.03 -0.16±0.02
pima -0.40±0.01 -0.39±0.01 -0.40±0.02 -0.39±0.01
sonar -0.32±0.03-0.29±0.03 -0.30±0.03 -0.31±0.03

19



boston
 N = 506
 D = 13

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

te
st

 R
M

S
E

concrete
 N = 1030

 D = 8

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

energy
 N = 768

 D = 8

0.5

0.6

0.7

0.8

0.9

1.0

1.1

kin8nm
 N = 8192

 D = 8

0.00

0.05

0.10

0.15

0.20

0.25

naval
 N = 11934

 D = 16

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

power
 N = 9568

 D = 4

3.0

3.5

4.0

4.5

5.0

protein
 N = 45730

 D = 9

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

wine_red
 N = 1588

 D = 11

0.35

0.40

0.45

0.50

0.55

0.60

0.65

yacht
 N = 308

 D = 6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

year
 N = 515345

 D = 90

0

1

2

3

4

5

6

GP 50
DGP-1 50

DGP-2 50
DGP-3 50

GP 100
DGP-1 100

DGP-2 100
DGP-3 100

Figure 12: Average test RMSE for GP methods
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Figure 13: The average rank based on the test RMSE for GP/DGP models across the datasets and their
train/test splits, generated based onDemšar(2006). See the main text for more details.

Table 2: Multiclass experiment: Average test log-likelihood/nats

Dataset N D K GP D-K DGP D-1-K GP D-2-K DGP D-3-K
glass 214 9 6 -0.79±0.02-0.71±0.02 -0.72±0.02 -0.71±0.02
new-thyroid 215 5 3 -0.05±0.01 -0.05±0.01 -0.05±0.02 -0.04±0.01
svmguide2 319 20 3 -0.54±0.02 -0.53±0.02 -0.52±0.02 -0.51±0.02
wine 178 13 3 -0.10±0.01-0.07±0.01 -0.07±0.01 -0.07±0.01
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Figure 15: The average rank based on the test MLL for methods on BNNs across the datasets and their
train/test splits, generated based onDemšar(2006). See the main text for more details.
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Table 3: Regression experiment: Average test log likelihood/nats

Dataset N D VI(G)-1 VI(KW)-1 VI(KW)-2 PBP-1 Dropout-1 SGLD-1 SGLD-2 HM C-1 GP 50 DGP-1 50 DGP-2 50 DGP-3 50 GP 100 DGP-1 100 DGP-2 100 DGP-3 100
boston 506 13 -2.90±0.07 -2.43±0.03 -2.64±0.02 -2.57±0.09 -2.46±0.25 -2.40±0.05 -2.38±0.06 -2.27±0.03 -2.22±0.07 -2.33±0.06 -2.17±0.10 -2.09±0.07 -2.16±0.07 -2.37±0.10 -2.09±0.06 -2.13±0.09
concrete 1030 8 -3.39±0.02 -3.04±0.02 -3.07±0.02 -3.16±0.02 -3.04±0.09 -3.08±0.03 -3.01±0.03 -2.72±0.02 -2.85±0.02 -3.13±0.03 -2.61±0.02 -2.63±0.03 -2.65±0.02 -2.92±0.03 -2.43±0.02 -2.44±0.02
energy 768 8 -2.39±0.03 -2.38±0.02 -1.89±0.07 -2.04±0.02 -1.99±0.09 -2.39±0.01 -2.21±0.01 -0.93±0.01 -1.29±0.01 -1.32±0.03 -0.95±0.01 -0.95±0.01 -1.11±0.02 -1.21±0.02 -0.90±0.01 -0.91±0.01
kin8nm 8192 8 0.90±0.01 2.40±0.05 2.91±0.10 0.90±0.01 0.95±0.03 1.28±0.00 1.68±0.00 1.35±0.00 1.31±0.01 0.68±0.07 1.79±0.02 1.93±0.01 1.68±0.01 1.09±0.04 2.31±0.01 2.46±0.01
naval 11934 16 3.73±0.12 5.87±0.29 6.10±0.19 3.73±0.01 3.80±0.05 3.33±0.01 3.21±0.02 7.31±0.00 4.86±0.04 3.60±0.33 4.77±0.32 5.11±0.23 5.51±0.03 3.75±0.37 5.13±0.27 5.78±0.05
power 9568 4 -2.89±0.01 -2.66±0.01 -2.28±0.02 -2.84±0.01 -2.89±0.01 -2.67±0.00 -2.61±0.01 -2.70±0.00 -2.66±0.01 -2.81±0.01 -2.58±0.01 -2.58±0.01 -2.55±0.01 -2.67±0.02 -2.39±0.02 -2.37±0.02
protein 45730 9 -2.99±0.01 -1.84±0.07 -0.42±0.31 -2.97±0.00 -2.80±0.05 -3.11±0.02 -1.23±0.01 -2.77±0.00 -2.95±0.05 -2.55±0.03 -2.11±0.04 -2.03±0.07 -2.52±0.07 -2.18±0.06 -1.51±0.09 -1.32±0.06
red wine 1588 11 -0.98±0.01 -0.78±0.02 -0.85±0.01 -0.97±0.01 -0.93±0.06 -0.41±0.01 0.14±0.02 -0.91±0.02 -0.67±0.01 -0.35±0.04 -0.10±0.03 -0.13±0.02 -0.57±0.02 0.07±0.03 0.37±0.02 0.25±0.03
yacht 308 6 -3.44±0.16 -1.68±0.04 -1.92±0.03 -1.63±0.02 -1.55±0.12 -2.90±0.02 -3.23±0.03 -1.62±0.01 -1.15±0.03 -1.39±0.14 -0.99±0.07 -0.94±0.05 -1.26±0.03 -1.34±0.10 -0.96±0.06 -0.80±0.04
year 515345 90 -3.62±NA -1.56±NA -1.17±NA -3.60±NA -3.59±NA -2.85±NA -2.85±NA NA±NA -0.65±NA -1.29±NA 0.21±NA 0.41±NA -0.05±NA -0.44±NA 0.26±NA 0.39±NA

Average Rank 15.10±0.39 9.00±1.18 7.50±1.70 13.70±0.40 12.10±0.64 12.50±0.75 9.40±1.42 8.80±1.38 8.20±0.69 10.80±0.95 5.30±0.51 4.20±0.66 6.10±0.57 8.20±0.72 2.80±0.49 2.30±0.25

Table 4: Regression experiment: Test root mean square error

Dataset N D VI(G)-1 VI(KW)-1 VI(KW)-2 PBP-1 Dropout-1 SGLD-1 SGLD-2 HM C-1 GP 50 DGP-1 50 DGP-2 50 DGP-3 50 GP 100 DGP-1 100 DGP-2 100 DGP-3 100
boston 506 13 4.32±0.29 2.67±0.11 3.06±0.13 3.01±0.18 2.97±0.85 2.21±0.10 1.96±0.10 2.76±0.20 2.43±0.12 3.02±0.20 2.38±0.12 2.33±0.12 2.39±0.12 3.56±0.29 2.38±0.11 2.38±0.12
concrete 1030 8 7.13±0.12 4.99±0.14 5.09±0.12 5.67±0.09 5.23±0.53 4.19±0.13 3.70±0.13 4.12±0.14 5.55±0.12 7.33±0.25 4.64±0.11 4.66±0.13 4.78±0.12 6.03±0.17 4.16±0.13 4.23±0.12
energy 768 8 2.65±0.08 2.50±0.06 1.59±0.13 1.80±0.05 1.66±0.19 1.15±0.03 0.91±0.03 0.48±0.01 1.02±0.02 0.84±0.03 0.57±0.02 0.54±0.01 0.87±0.03 0.80±0.03 0.56±0.02 0.56±0.01
kin8nm 8192 8 0.10±0.00 0.02±0.00 0.01±0.00 0.10±0.00 0.10±0.00 0.02±0.00 0.01±0.00 0.06±0.00 0.07±0.00 0.22±0.02 0.05±0.00 0.04±0.00 0.06±0.00 0.15±0.01 0.03±0.00 0.02±0.00
naval 11934 16 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00
power 9568 4 4.33±0.04 3.45±0.03 2.35±0.05 4.12±0.03 4.02±0.18 2.42±0.02 1.25±0.02 3.73±0.04 3.75±0.03 4.71±0.09 3.60±0.03 3.60±0.04 3.60±0.04 4.08±0.08 3.21±0.06 3.18±0.05
protein 45730 9 4.84±0.03 1.48±0.08 0.39±0.10 4.73±0.01 4.36±0.04 1.07±0.01 0.59±0.00 3.91±0.02 4.83±0.21 4.22±0.08 3.24±0.10 2.89±0.28 4.05±0.13 3.69±0.19 2.19±0.22 2.01±0.16
red wine 1588 11 0.65±0.01 0.52±0.01 0.56±0.01 0.64±0.01 0.62±0.04 0.21±0.00 0.10±0.00 0.63±0.01 0.57±0.01 0.62±0.01 0.50±0.01 0.48±0.01 0.55±0.01 0.62±0.02 0.41±0.01 0.43±0.01
yacht 308 6 6.89±0.67 1.30±0.08 1.55±0.07 1.01±0.05 1.11±0.38 1.32±0.08 2.48±0.18 0.56±0.05 1.15±0.09 1.58±0.37 0.98±0.09 0.93±0.09 1.16±0.07 1.84±0.26 1.06±0.14 0.91±0.08
year 515345 90 9.03±NA 1.15±NA 0.70±NA 8.88±NA 8.85±NA 0.07±NA 0.04±NA NA±NA 0.79±NA 5.28±NA 0.45±NA 0.26±NA 0.27±NA 0.51±NA 0.22±NA 0.37±NA

Average Rank 14.90±0.50 7.90±1.09 7.60±1.42 12.50±0.85 12.00±0.62 4.80±1.08 4.20±1.55 7.50±1.72 10.10±0.74 13.20±0.88 7.00±0.76 5.50±0.72 7.60±0.60 12.20±0.99 4.90±0.57 4.10±0.43
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B EP and SEP

In this section, we summarise the EP and SEP iterative procedures. The EP algorithm is often mistaken
to be optimisingKL(p(u|X,y)||q(u)); however, this objective function is intractable. Instead, EP up-
dates one approximate factor at a time by the following procedure: 1. remove the factor̃tn(u) to form
the leave-one-out or cavity distributionq\n(u) ∝ q(u)/t̃n(u), 2. minimiseKL(q\n(u)p(yn|u,Xn)||q(u)),
resulting in a new approximate factort̃newn (u) which can be 3. combined with the cavity to form the
new approximate posterior. This procedure is iteratively performed for each datapoint, and often re-
quires several passes through the training set for convergence. One disadvantage of the EP algorithm
is the need to store the approximate factors in memory, whichcostsO(NM2).

To sidestep this expensive memory requirement, the SEP algorithm proposes tying the approxi-
mate data factors, that is to make some or all factors the same. The simplest case isq(u) ∝ p(u)g(u)N
whereg(u) is theaveragedata factor. The SEP algorithm, similar to EP, involves iteratively finding
the new approximate factorgnew(u), as follows: 1. remove the factor̃g(u) to form the leave-one-out
or cavity distributionq\1(u) ∝ q(u)/g̃(u), 2. minimiseKL(q\1(u)p(yn|u,Xn)||q(u)), resulting in
a new approximate factor̃gnew(u) which can be 3. combined with the cavity to form the new ap-
proximate posterior, and in addition to EP, 4. perform an explicit update to theaveragefactor g(u):
g(u)← g1−β(u)gβnew(u), whereβ is a small learning rate.

C EP/SEP moment matching step

We have proposed using the EP approximate marginal likelihood for direct optimisation of the approx-
imate posterior over the pseudo datapoints and the hyperparameters. An alternative is to run SEP/EP
to obtain the approximate posterior, and once this is done, obtain the approximate marginal likelihood
for hyperparameter tuning and repeat.

As we use Gaussian EP/SEP, the deletion, the update step and the explicit update step in the case
of SEP are straightforward. The moment matching step is equivalent to the following updates to the
mean and covariance of the approximate posterior:

m = m\1 +V\1d logZ
dm\1

V = V\1 −V\1

[

d logZ
dm\1

(

d logZ
dm\1

)

⊺

− 2
d logZ
dV\1

]

V\1,

whereq\1(u) = N (u;m\1,V\1) is the cavity distribution, obtained by the deletion step.
The inference scheme therefore reduces to evaluating the normalising constantZ and its gradient.

Fortunately, we can approximately computelogZ and its gradients using the probabilistic propagation
algorithm, in exactly the same way as discussed in the main text.

D Computing the gradients oflogZ
Letml andvl be the mean and variance of the output Gaussian at thel-th layer in the forward propa-
gation step, as we have shown in the main text,

ml = ψl,1Al (1)

vl = σ2l + ψl,0 + tr (Blψl,2)−m2
l (2)
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where

ψl,0 = Eq(h1)[Khl,hl
] (3)

ψl,1 = Eq(hl−1)[Khl,ul
] (4)

ψl,1 = Eq(hl−1)[Kul,hl
Khl,ul

] (5)

Al = K−1
ul,ul

m
\1
l

(6)

Bl = K−1
ul,ul

(V
\1
l +m

\1
l m

\1,T
l )K−1

ul,ul
−K−1

ul,ul
(7)

In the forward propagation step, we need to compute the gradients ofml and vl w.r.t. αl, the
parameters of the model andml−1 andvl−1, the mean and variance of the distribution over the input.
Let βl = {αl,ml−1, vl−1} As Al andBl are shared between datapoints, one trick to reduce the
computation required for each datapoint is to compute the gradients w.r.t.A andB first, then combine
them at the end of each minibatch. If we assume thatAl andBl are fixed, the gradients ofml andvl
are as follows

dml

dβl
=

dψl,1

dβl
Al (8)

dvl
dβl

=
dσ2

l

dβl
+

dψl,0

dβl
+ tr

(

Bl

dψl,2

dβl

)

− 2ml

dml

dβl
(9)

dml

dAl

= ψ⊺

l,1 (10)

dml

dBl

= 0 (11)

dvl
dAl

= −2ml

dml

dAl

(12)

dvl
dBl

= ψ⊺

l,2 (13)

At the end of the forward step, we can obtainZ = q(y) = N (y;mL, vL), leading to,

logZ = −1

2
log(2πvL)−

1

2

(y −mL)
2

vL
(14)

d logZ
dmL

=
y −mL

vL
(15)

d logZ
dvL

= − 1

2vL
+

1

2

(y −mL)
2

v2L
. (16)

We are now ready to perform the backpropagation step, that iswe compute the gradients oflogZ
w.r.t. parameters at a layerαl using the chain rule,

d logZ
dαl

=
d logZ
dml

dml

dαl

+
d logZ
dvl

dvl
dαl

. (17)

Similarly, we can compute the gradients w.r.t. the mean and variance of the input distribution,ml−1

andvl−1, andAl andBl.
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E Computing the gradients of the approximate marginal likelihood

The approximate marginal likelihood as discussed in the main text is as follows,

F = −(N − 1)φ(θ) +Nφ(θ\1)− φ(θprior) +
N
∑

n=1

logZn (18)

whereθ, θ\1 andθprior are the natural parameters ofq(u), q\1(u) andp(u) respectively,φ(θ) is the
log normaliser or log partition function of a Gaussian distribution with natural parametersθ or mean
m and covarianceV,

φ(θ) =
1

2
log |V|+ 1

2
m⊺V−1m, (19)

α is the model hyperameters that we need to tune, andlogZn = log
∫

q\n(u)p(yn|u,Xn)du. Con-
sider the gradient of this objective function w.r.t. one parameterαi,

dF
dαi

= −(N − 1)
dφ(θ)

dαi

+N
dφ(θ\1)

dαi

− dφ(θprior)

dαi

+

N
∑

n=1

d logZn

dαi

= −(N − 1)
dφ(θ)

dθ

dθ

dαi

+N
dφ(θ\1)

dθ\1
dθ\1

dαi

− dφ(θprior)

dθprior

dθprior
dαi

+
N
∑

n=1

d logZn

dαi

= −(N − 1)η⊺
dθ

dαi

+Nη\1,⊺
dθ\1

dαi

− η⊺prior
dθprior
dαi

+
N
∑

n=1

d logZn

dαi

whereη, η\1 and ηprior are the expected sufficient statistics under theq(u), q\1(u) and p(u) re-
spectively. Specifically, for Gaussian approximate EP as discussed in the main paper, the natural
parameters are as follows,

q(u) : θ = θprior +Nθg

q\1(u) : θ\1 = θprior + (N − 1)θg

p(u) : θprior

leading to

dF
dαi

=
[

−(N − 1)η⊺ +Nη\1,⊺ − η⊺prior
] dθprior

dαi

+N(N − 1)
[

−η⊺ + η\1,⊺
] dθg
dαi

+
N
∑

n=1

d logZn

dαi
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F Dealing with non-Gaussian likelihoods

In this section, we discuss how to compute the log ofZ =
∫

du q\1(u) p(y|u,x) when we have a
non-Gaussian likelihoodp(y|u,x). For example, if the observations are binary, we can use the probit
likelihood, that isp(y|fL, hL−1) = φ(yfL) whereφ is the Gaussian cdf. We now need to compute,

Z =

∫

q\1(u)p(y|u,x)du

=

∫

q\1(u)p(fL|hL−1,uL)p(y|fL)dudhL−1dfL

≈
∫

N (fL;mf , vf)p(y|fL)dfL

where we can findq(fL) = N (fL;mf , vf) using the forward pass of the probabilistic backpropagation.
The final integral above can be computed exactly, leading to,

Z ≈ φ
(

ymf√
vf + 1

)

If we have a different likelihood and there is no simple approximation available as above, we can
evaluateZ by Monte Carlo averaging, that is to draw samples fromq(fL), evaluate the likelihood,
then sum and normalise accordingly. However, as we are interested inlogZ and its gradients, the
objective and gradients obtained by Monte Carlo will be slightly biased. This bias is, however, can be
significantly reduced by using more samples.

G Improving the Gaussian approximation

In this section, we discuss how to obtain a non-diagonal Gaussian approximation for the hidden vari-
ables from the second layer and above, when computinglogZ. Consider a DGP with two GP layer, a
one dimensional hidden layer and two dimensional observationsy = [y1, y2]. Following the derivation
in the main text, we can exactly marginalise out the inducingoutputs for each GP layer:

Z =

∫

dh1q(y|h1)q(h1) (20)

whereq(h1) = N (h1;m1, v1) and

q(y|h1) = N (y|h1;my|h1
,Vy|h1

)

= N
(

y|h1;
[

my1|h1

my2|h1

]

,

[

vy1|h1
0

0 vy2|h1

])

since we assume that there are two independent GPs in the second layer, and the distribution above
is a conditional given the input to the second layer,h1. Importantly, we need to integrate outh1 in
eqn. (20). As such, the resulting distribution overy become a complicated distribution in whichy1
andy2 are strongly correlated. Consequently, any approximationthat breaks this dependency could
be poor. We aim to approximate this distribution by a non-diagonal Gaussian with the same moments,
that is in words, the approximating Gaussian will have the mean being the expected mean, and the
new covariance being the expected covariance plus the covariance of the mean,

my = Eq(h1)[my|h1
] (21)
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Vy = Eq(h1)[Vy|h1
] + covarq(h1)[my|h1

] (22)

Substitute the mean and covariance of the conditionalq(y|h1) into the above expressions gives us,

my =

[

Eq(h1)[my1|h1
]

Eq(h1)[my2|h1
]

]

(23)

and

Vy =

[

Eq(h1)[vy1|h1
] 0

0 Eq(h1)[vy2|h1
]

]

+

[

Eq(h1)[m
2
y1|h1

] Eq(h1)[my1|h1
my2|h1

]

Eq(h1)[my1|h1
my2|h1

] Eq(h1)[m
2
y2|h1

]

]

−mym
⊺

y (24)

Note that the diagonal elements ofVy are identical to the expression for the variance in the main
text for the single dimensional case.
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