39 research outputs found

    Unique contributions to the scalar bispectrum in `just enough inflation'

    Full text link
    A scalar field rolling down a potential with a large initial velocity results in inflation of a finite duration. Such a scenario suppresses the scalar power on large scales improving the fit to the cosmological data. We find that the scenario leads to a hitherto unexplored situation wherein the boundary terms dominate the contributions to the scalar bispectrum over the bulk terms. We show that the consistency relation governing the non-Gaussianity parameter fNLf_{_{\rm NL}} is violated on large scales and that the contributions at the initial time can substantially enhance the value of fNLf_{_{\rm NL}}.Comment: v1: 5 pages, 4 figure

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging

    Get PDF
    © The Royal Society of Chemistry 2015. Metals have a number of important roles within the brain. We used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the three-dimensional concentrations and distributions of transition metals, in particular iron (Fe), copper (Cu) and zinc (Zn) within the murine brain. LA-ICP-MS is one of the leading analytical tools for measuring metals in tissue samples. Here, we present a complete data reduction protocol for measuring metals in biological samples, including the application of a pyramidal voxel registration technique to reproducibly align tissue sections. We used gold (Au) nanoparticle and ytterbium (Yb)-tagged tyrosine hydroxylase antibodies to assess the co-localisation of Fe and dopamine throughout the entire mouse brain. We also examined the natural clustering of metal concentrations within the murine brain to elucidate areas of similar composition. This clustering technique uses a mathematical approach to identify multiple 'elemental clusters', avoiding user bias and showing that metal composition follows a hierarchical organisation of neuroanatomical structures. This work provides new insight into the distinct compartmentalisation of metals in the brain, and presents new avenues of exploration with regard to region-specific, metal-associated neurodegeneration observed in several chronic neurodegenerative diseases

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Full text link

    Construction of 3D native elemental maps for large biological specimens using LA-ICP-MS coupled with X-ray tomography

    Full text link
    A step-change in the utility of elemental imaging in the biological sciences can be achieved by the integration of quantitative elemental distributions with structural information, allowing novel insights into how tissue development is associated with a dynamic chemical environment. To demonstrate this potential, here we construct a 3D correlative map of biometal distribution and skeletal growth for the first time in a complex organism-in a mouse embryo at developmental stage E14. We achieved this by registering laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data to micro-computerized tomography (ÎĽCT) imagery using endogenous fiducial markers. LA-ICP-MS compositional maps of Rb were used as fiducial markers of dense regions in the micro-CT dataset (e.g. skeletal structure). Results of image registration showed high spatial correlation between both datasets which improved with increasing contrast of the micro-CT images. When coupled with recent advances in analytical instrumentation promoting rapid LA-ICP-MS scanning, this technique promises an enhanced understanding of development in complex biological systems without the need for chemical pre-treatment

    An integrated mass spectrometry imaging and digital pathology workflow for objective detection of colorectal tumours by unique atomic signatures

    Full text link
    Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology. First, we generated quantitative LA-ICP-MS images of three colorectal surgical resections with case-matched normal intestinal wall tissue and used this data in a Monte Carlo optimisation experiment to develop an algorithm that can classify pixels as tumour positive or negative. Blinded testing and interrogation of LA-ICP-MS images with micrographs of haematoxylin and eosin stained and Ki67 immunolabelled sections revealed Monte Carlo optimisation accurately identified primary tumour cells, as well as returning false positive pixels in areas of high cell proliferation. We analysed an additional 11 surgical resections of primary colorectal tumours and re-developed our image processing method to include a random forest regression machine learning model to correctly identify heterogenous tumours and exclude false positive pixels in images of non-malignant tissue. Our final model used over 1.6 billion calculations to correctly discern healthy cells from various types and stages of invasive colorectal tumours. The imaging mass spectrometry and data analysis methods described, developed in partnership with clinical cancer researchers, have the potential to further support cancer detection as part of a comprehensive digital pathology approach to cancer care through validation of a new chemical biomarker of tumour cells

    Louisville seamount subduction and its implication on mantle flow beneath the central Tonga–Kermadec arc

    No full text
    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system
    corecore