82 research outputs found

    The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats

    Get PDF
    The aim of the present study was to investigate the effect of DSP4-induced noradrenaline depletion on learning and memory in a spatial memory paradigm (holeboard). Since Harro et al. Brain Res 976:209–216 (2003) have demonstrated that short-term effects of DSP4 administration include both noradrenaline depletion and changes in dopamine and its metabolites—with the latter vanishing within 4 weeks after the neurotoxic lesion—the behavioural effects observed immediately after DSP4 administration cannot solely be related to noradrenaline. In the present study, spatial learning, reference memory and working memory were therefore assessed 5–10 weeks after DSP4 administration. Our results suggest that the administration of DSP4 did not lead to changes in spatial learning and memory when behavioural assessment was performed after a minimum of 5 weeks following DSP4. This lack of changes in spatial behaviour suggests that the role of noradrenaline regarding these functions may be limited. Future studies will therefore have to take into account the time-course of neurotransmitter alterations and behavioural changes following DSP4 administration

    Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection

    Get PDF
    Tillering in cereals is a complex process in the regulation of which also signals from the roots in the form of strigolactones play an important role. The strigolactones are signalling molecules that are secreted into the rhizosphere where they act as germination stimulants for root parasitic plants and hyphal branching factors for arbuscular mycorrhizal fungi. On the other hand, they are also transported from the roots to the shoot where they inhibit tillering or branching. In the present study, the genetic variation in strigolactone production and tillering phenotype was studied in twenty rice varieties collected from all over the world and correlated with S. hermonthica infection. Rice cultivars like IAC 165, IAC 1246, Gangweondo and Kinko produced high amounts of the strigolactones orobanchol, 2′-epi-5-deoxystrigol and three methoxy-5-deoxystrigol isomers and displayed low amounts of tillers. These varieties induced high S. hermonthica germination, attachment, emergence as well as dry biomass. In contrast, rice cultivars such as Super Basmati, TN 1, Anakila and Agee displayed high tillering in combination with low production of the aforementioned strigolactones. These varieties induced only low S. hermonthica germination, attachment, emergence and dry biomass. Statistical analysis across all the varieties confirmed a positive correlation between strigolactone production and S. hermonthica infection and a negative relationship with tillering. These results show that genetic variation in tillering capacity is the result of genetic variation in strigolactone production and hence could be a helpful tool in selecting rice cultivars that are less susceptible to S. hermonthica infection

    Energy expenditure during egg laying is equal for early and late breeding free-living female great tits

    Get PDF
    In many bird populations, variation in the timing of reproduction exists but it is not obvious how this variation is maintained as timing has substantial fitness consequences. Daily energy expenditure (DEE) during the egg laying period increases with decreasing temperatures and thus perhaps only females that can produce eggs at low energetic cost will lay early in the season, at low temperatures. We tested whether late laying females have a higher daily energy expenditure during egg laying than early laying females in 43 great tits (Parus major), by comparing on the same day the DEE of early females late in their laying sequence with DEE of late females early in their egg laying sequence. We also validated the assumption that there are no within female differences in DEE within the egg laying sequence. We found a negative effect of temperature and a positive effect of female body mass on DEE but no evidence for differences in DEE between early and late laying females. However, costs incurred during egg laying may have carry-over effects later in the breeding cycle and if such carry-over effects differ for early and late laying females this could contribute to the maintenance of phenotypic variation in laying dates

    Effects of methylphenidate on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)

    Get PDF
    The aim of this study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on attention in rats as measured using the 5-choice-serial-reaction-time task (5CSRTT) and to investigate whether methylphenidate has effects on DSP4-treated rats. Methylphenidate is a noradrenaline and dopamine reuptake inhibitor and commonly used in the pharmacological treatment of individuals with attention deficit/hyperactivity disorder (ADHD). Wistar rats were trained in the 5CSRTT and treated with one of three doses of DSP4 or saline. Following the DSP4 treatment rats were injected with three doses of methylphenidate or saline and again tested in the 5CSRTT. The treatment with DSP4 caused a significant decline of performance in the number of correct responses and a decrease in response accuracy. A reduction in activity could also be observed. Whether or not the cognitive impairments are due to attention deficits or changes in explorative behaviour or activity remains to be investigated. The treatment with methylphenidate had no beneficial effect on the rats’ performance regardless of the DSP4 treatment. In the group without DSP4 treatment, methylphenidate led to a reduction in response accuracy and bidirectional effects in regard to parameters related to attention. These findings support the role of noradrenaline in modulating attention and call for further investigations concerning the effects of methylphenidate on attentional processes in rats

    Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics

    Get PDF
    Biofilms contribute to the pathogenesis of many forms of Staphylococcus aureus infection. Treatment of these infections is complicated by intrinsic resistance to conventional antibiotics, thus creating an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections.This study demonstrates that a botanical natural product composition (220D-F2) rich in ellagic acid and its derivatives can limit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility. The source of this composition is Rubus ulmifolius Schott. (Rosaceae), a plant used in complementary and alternative medicine in southern Italy for the treatment of skin and soft tissue infections. All S. aureus clonal lineages tested exhibited a reduced capacity to form a biofilm at 220D-F2 concentrations ranging from 50-200 µg/mL, which were well below the concentrations required to limit bacterial growth (530-1040 µg/mL). This limitation was therapeutically relevant in that inclusion of 220D-F2 resulted in enhanced susceptibility to the functionally-distinct antibiotics daptomycin, clindamycin and oxacillin. Testing with kidney and liver cell lines also demonstrated a lack of host cell cytotoxicity at concentrations of 220D-F2 required to achieve these effects.These results demonstrate that extract 220D-F2 from the root of Rubus ulmifolius can be used to inhibit S. aureus biofilm formation to a degree that can be correlated with increased antibiotic susceptibility without toxic effects on normal mammalian cells. Hence, 220D-F2 is a strong candidate for development as a botanical drug for use in the prevention and treatment of S. aureus biofilm-associated infections

    Prevalence of HPV infection among Greek women attending a gynecological outpatient clinic

    Get PDF
    Background: Human papillomavirus (HPV) infection is a causative factor for cervical cancer. Early detection of high risk HPV types might help to identify women at high risk of cervical cancer. The aim of the present study was to examine the HPV prevalence and distribution in cervical smears in a sample of Greek women attending a gynecological outpatient clinic and to explore the determinants of the infection.Methods: A total of 225 women were studied. All women underwent a regular gynecological control. 35 HPV types were studied; 6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 61, 62, 66, 68, 70, 71, 72, 73, 81, 82, 83, 84, 85 and 89. Also, basic demographic information, sociodemographic characteristics and sexual behavior were recorded.Results: HPV was detected in 22.7% of the study population. The percentage of the newly diagnosed women with HPV infection was 17.3%. HPV-16 was the most common type detected (5.3%) followed by HPV-53 (4.9%). 66.2% of the study participants had a Pap test during the last year without any abnormalities. HPV infection was related positively with alcohol consumption (OR: 2.19, 95% CI: 1.04-4.63, P = 0.04) and number of sexual partners (OR: 2.16, 95% CI: 1.44-3.25, P < 0.001), and negatively with age (OR: 0.93, 95% CI: 0.87-0.99, P = 0.03), and monthly income (OR: 0.63, 95% CI: 0.44-0.89, P = 0.01).Conclusion: The prevalence of HPV in women attending an outpatient clinic is high. Number of sexual partners and alcohol consumption were the most significant risk factors for HPV infection, followed by young age and lower income

    Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    Get PDF
    Background: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.\ud \ud Methodology/Principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1x1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected.\ud \ud Significance: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection

    Bi-Directional Effect of Cholecystokinin Receptor-2 Overexpression on Stress-Triggered Fear Memory and Anxiety in the Mouse

    Get PDF
    Fear, an emotional response of animals to environmental stress/threats, plays an important role in initiating and driving adaptive response, by which the homeostasis in the body is maintained. Overwhelming/uncontrollable fear, however, represents a core symptom of anxiety disorders, and may disturb the homeostasis. Because to recall or imagine certain cue(s) of stress/threats is a compulsory inducer for the expression of anxiety, it is generally believed that the pathogenesis of anxiety is associated with higher attention (acquisition) selectively to stress or mal-enhanced fear memory, despite that the actual relationship between fear memory and anxiety is not yet really established. In this study, inducible forebrain-specific cholecystokinin receptor-2 transgenic (IF-CCKR-2 tg) mice, different stress paradigms, batteries of behavioral tests, and biochemical assays were used to evaluate how different CCKergic activities drive fear behavior and hormonal reaction in response to stresses with different intensities. We found that in IF-CCKR-2 tg mice, contextual fear was impaired following 1 trial of footshock, while overall fear behavior was enhanced following 36 trials of footshock, compared to their littermate controls. In contrast to a standard Yerkes-Dodson (inverted-U shaped) stress-fear relationship in control mice, a linearized stress-fear curve was observed in CCKR-2 tg mice following gradient stresses. Moreover, compared to 1 trial, 36 trials of footshock in these transgenic mice enhanced anxiety-like behavior in other behavioral tests, impaired spatial and recognition memories, and prolonged the activation of adrenocorticotropic hormone (ACTH) and glucocorticoids (CORT) following new acute stress. Taken together, these results indicate that stress may trigger two distinctive neurobehavioral systems, depending on both of the intensity of stress and the CCKergic tone in the brain. A “threshold theory” for this two-behavior system has been suggested

    Differential Stress-Induced Neuronal Activation Patterns in Mouse Lines Selectively Bred for High, Normal or Low Anxiety

    Get PDF
    There is evidence for a disturbed perception and processing of emotional information in pathological anxiety. Using a rat model of trait anxiety generated by selective breeding, we previously revealed differences in challenge-induced neuronal activation in fear/anxiety-related brain areas between high (HAB) and low (LAB) anxiety rats. To confirm whether findings generalize to other species, we used the corresponding HAB/LAB mouse model and investigated c-Fos responses to elevated open arm exposure. Moreover, for the first time we included normal anxiety mice (NAB) for comparison. The results confirm that HAB mice show hyperanxious behavior compared to their LAB counterparts, with NAB mice displaying an intermediate anxiety phenotype. Open arm challenge revealed altered c-Fos response in prefrontal-cortical, limbic and hypothalamic areas in HAB mice as compared to LAB mice, and this was similar to the differences observed previously in the HAB/LAB rat lines. In mice, however, additional differential c-Fos response was observed in subregions of the amygdala, hypothalamus, nucleus accumbens, midbrain and pons. Most of these differences were also seen between HAB and NAB mice, indicating that it is predominately the HAB line showing altered neuronal processing. Hypothalamic hypoactivation detected in LAB versus NAB mice may be associated with their low-anxiety/high-novelty-seeking phenotype. The detection of similarly disturbed activation patterns in a key set of anxiety-related brain areas in two independent models reflecting psychopathological states of trait anxiety confirms the notion that the altered brain activation in HAB animals is indeed characteristic of enhanced (pathological) anxiety, providing information for potential targets of therapeutic intervention

    Streptococcus pneumoniae in Biofilms Are Unable to Cause Invasive Disease Due to Altered Virulence Determinant Production

    Get PDF
    It is unclear whether Streptococcus pneumoniae in biofilms are virulent and contribute to development of invasive pneumococcal disease (IPD). Using electron microscopy we confirmed the development of mature pneumococcal biofilms in a continuous-flow-through line model and determined that biofilm formation occurred in discrete stages with mature biofilms composed primarily of dead pneumococci. Challenge of mice with equal colony forming units of biofilm and planktonic pneumococci determined that biofilm bacteria were highly attenuated for invasive disease but not nasopharyngeal colonization. Biofilm pneumococci of numerous serotypes were hyper-adhesive and bound to A549 type II pneumocytes and Detroit 562 pharyngeal epithelial cells at levels 2 to 11-fold greater than planktonic counterparts. Using genomic microarrays we examined the pneumococcal transcriptome and determined that during biofilm formation S. pneumoniae down-regulated genes involved in protein synthesis, energy production, metabolism, capsular polysaccharide (CPS) production, and virulence. We confirmed these changes by measuring CPS by ELISA and immunoblotting for the toxin pneumolysin and the bacterial adhesins phosphorylcholine (ChoP), choline-binding protein A (CbpA), and Pneumococcal serine-rich repeat protein (PsrP). We conclude that biofilm pneumococci were avirulent due to reduced CPS and pneumolysin production along with increased ChoP, which is known to bind C-reactive protein and is opsonizing. Likewise, biofilm pneumococci were hyper-adhesive due to selection for the transparent phase variant, reduced CPS, and enhanced production of PsrP, CbpA, and ChoP. These studies suggest that biofilms do not directly contribute to development of IPD and may instead confer a quiescent mode of growth during colonization
    corecore