219 research outputs found

    Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone

    Get PDF
    Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000Β [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV

    Differential Expression of Vegfr-2 and Its Soluble Form in Preeclampsia

    Get PDF
    Several studies have suggested that the main features of preeclampsia (PE) are consequences of endothelial dysfunction related to excess circulating anti-angiogenic factors, most notably, soluble sVEGFR-1 (also known as sFlt-1) and soluble endoglin (sEng), as well as to decreased PlGF. Recently, soluble VEGF type 2 receptor (sVEGFR-2) has emerged as a crucial regulator of lymphangiogenesis. To date, however, there is a paucity of information on the changes of VEGFR-2 that occur during the clinical onset of PE. Therefore, the aim of our study was to characterize the plasma levels of VEGFR-2 in PE patients and to perform VEGFR-2 immunolocalization in placenta.By ELISA, we observed that the VEGFR-2 plasma levels were reduced during PE compared with normal gestational age matched pregnancies, whereas the VEGFR-1 and Eng plasma levels were increased. The dramatic drop in the VEGFR-1 levels shortly after delivery confirmed its placental origin. In contrast, the plasma levels of Eng and VEGFR-2 decreased only moderately during the early postpartum period. An RT-PCR analysis showed that the relative levels of VEGFR-1, sVEGFR-1 and Eng mRNA were increased in the placentas of women with severe PE. The relative levels of VEGFR-2 mRNA as well as expressing cells, were similar in both groups. We also made the novel finding that a recently described alternatively spliced VEGFR-2 mRNA variant was present at lower relative levels in the preeclamptic placentas.Our results indicate that the plasma levels of anti-angiogenic factors, particularly VEGFR-1 and VEGFR-2, behave in different ways after delivery. The rapid decrease in plasma VEGFR-1 levels appears to be a consequence of the delivery of the placenta. The persistent circulating levels of VEGFR-2 suggest a maternal endothelial origin of this peptide. The decreased VEGFR-2 plasma levels in preeclamptic women may serve as a marker of endothelial dysfunction

    Quantitative Multicolor Compositional Imaging Resolves Molecular Domains in Cell-Matrix Adhesions

    Get PDF
    Background: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. Methodology/Principal Findings: We present here a compositional imaging approach for the analysis and display of multicomponent compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focaladhesion-associated complexes to Rho-kinase inhibition. Conclusions/Significance: Multicolor compositional imaging resolves β€˜β€˜molecular signatures’ ’ characteristic to focaladhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional β€˜β€˜contents-resolved’ ’ dimensions. We propose that compositional imaging can serve as

    What is the relevance of the tip-apex distance as a predictor of lag screw cut-out?

    Get PDF
    Using a simple mathematical formulation, the relationship between the position of the lag screw tip (relevant to both intramedullary and extramedullary devices) and the concept of tip-apex distance (TAD) was derived. TAD is widely used in operating theaters as a surgical guideline in relation to the fixation of trochanteric fractures, and in clinical studies as a predictor of lag screw cut-out. In order to visualize better this concept, the locus of points having the same TAD was plotted and the dependence of TAD on the location of the lag screw tip was also reported. It was shown that TAD should be adjusted for the size of the femoral head (a variable which varies a lot according to the sex of the patient) while no correlation was found between TAD and bone morphometry indices obtained from micro-CT data (BV/TV and Tb.Th). Therefore, these results seem to suggest that TAD lacks mechanical justification and that predictors which are based on mechanical properties, such as bone density, should be investigated further

    An analysis of temporal and generational trends in the incidence of anal and other HPV-related cancers in Southeast England

    Get PDF
    Patients diagnosed in 1960–2004 with cancer of the cervix, anus, vulva, vagina or penis were identified from the Thames Cancer Registry database, and age-standardised period (temporal) incidence rates calculated by direct standardisation. Age-cohort modelling techniques were used to estimate age-specific incidence rates in the earlier and later cohorts, enabling the calculation of age-standardised cohort (generational) rates. Incidence of anal cancer increased for both men and women over the period studied, mainly in those born from 1940 onwards. Similar generational patterns were seen for cancers of the vulva and vagina, but those for penile cancer were different. For cervix cancer, the steep downward trend in cohort rates due to screening levelled off in women born from 1940 onwards. Our findings are compatible with the hypothesis that changes in sexual practices were a major contributor to the increases of these cancers. Programmes of vaccination against HPV, aimed at reducing the burden of cervical cancer, may also help to reduce the incidence of cancer at other anogenital sites

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Understanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control

    Get PDF
    BACKGROUND: While neural systems are known to respond to chemical and electrical stimulation, the effect of mechanics on these highly sensitive cells is still not well understood. The ability to examine the effects of mechanics on these cells is limited by existing approaches, although their overall response is intimately tied to cell-matrix interactions. Here, we offer a novel method, which we used to investigate stretch-activated mechanotransduction on nerve terminals of sensory neurons through an elastomeric interface. METHODOLOGY/PRINCIPAL FINDINGS: To apply mechanical force on neurites, we cultured dorsal root ganglion neurons on an elastic substrate, polydimethylsiloxane (PDMS), coated with extracellular matrices (ECM). We then implemented a controlled indentation scheme using a glass pipette to mechanically stimulate individual neurites that were adjacent to the pipette. We used whole-cell patch clamping to record the stretch-activated action potentials on the soma of the single neurites to determine the mechanotransduction-based response. When we imposed specific mechanical force through the ECM, we noted a significant neuronal action potential response. Furthermore, because the mechanotransduction cascade is known to be directly affected by the cytoskeleton, we investigated the cell structure and its effects. When we disrupted microtubules and actin filaments with nocodozale or cytochalasin-D, respectively, the mechanically induced action potential was abrogated. In contrast, when using blockers of channels such as TRP, ASIC, and stretch-activated channels while mechanically stimulating the cells, we observed almost no change in action potential signalling when compared with mechanical activation of unmodified cells. CONCLUSIONS/SIGNIFICANCE: These results suggest that sensory nerve terminals have a specific mechanosensitive response that is related to cell architecture

    Patients with usual vulvar intraepithelial neoplasia-related vulvar cancer have an increased risk of cervical abnormalities

    Get PDF
    Contains fulltext : 81890.pdf (publisher's version ) (Closed access)BACKGROUND: Vulvar squamous cell carcinoma (SCC) originates the following two pathways, related to differentiated (d) vulvar intraepithelial neoplasia (VIN) or to human papillomavirus (HPV)-related usual (u) VIN. Multicentric HPV infections (cervix, vagina and vulva) are common. We hypothesise that patients with a uVIN-related vulvar SCC more often have cervical high-grade squamous intraepithelial lesions (HSILs) compared with women with dVIN-related vulvar SCC. METHODS: All vulvar SCCs (201) were classified to be dVIN- (n=164) or uVIN related (n=37). Data with regard to the smear history and cervical histology were retrieved from PALGA, the nationwide Netherlands database of histo- and cytopathology. For HSIL cervical smears of which histology was taken, HPV DNA analysis on both the vulvar and cervical specimens was performed. RESULTS: At least one smear was available in 145 (72%) of the 201 patients. Patients with a uVIN-related vulvar SCC more often had an HSIL compared with patients with a dVIN-related SCC (35 vs 2%, P<0.001). A total of 10 of the 13 HSILs were histologically assessed and identical HPV types were found in the vulva and cervix. CONCLUSION: These data emphasise the necessity to differentiate between dVIN- and uVIN-related vulvar tumours and to examine the entire lower female ano-genital tract once an uVIN-related lesion is found

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor

    Immunophenotypic predictive profiling of BRCA1-associated breast cancer

    Get PDF
    The immunophenotypic predictive profile of BRCA1-associated cancers including major predictive markers, i.e., PARP-1, EGFR, c-kit, HER-2, and steroid hormones (ER/PR) that may have therapeutic relevance has not yet been reported in a comprehensive study. Using immunohistochemistry, we examined the expression of these proteins in a large cohort of BRCA1-associated breast cancers. PARP-1 immunoreactivity was found in 81.9%, EGFR in 43.6%, ER/PR in 17.9%, c-kit in 14.7%, and overexpression of HER-2 in 3.6% of cancers. For all markers studied, 8.2% of tumors were negative. Expression of only one predictive marker was found in 29.7% of cancers, and most frequently, it was PARP-1 (20.8%). In 62.1% of tumors, more than one predictive marker was expressed: PARP-1 and EGFR in 30.4%, PARP-1, and hormone receptors in 13.3% and PARP-1 with c-kit in 7.5% of all tumors. Coexpression of two or more other predictive markers was rare. There were significant differences in the median age at diagnosis of BRCA1-associated cancer between patients with ER+ vs. ERβˆ’ and grades 1–2 vs. grade 3 tumors. These results demonstrate that BRCA1-associated cancers differ with respect to expression of proteins that are regarded as targets for specific therapies and that 92% of patients with BRCA1-associated cancers may benefit from one or several options for specific therapy (in addition to DNA damaging agents, e.g., cisplatin). About 8% of cancers which do not express therapeutic target proteins may not respond to such therapies. Knowledge of the immunophenotypic predictive profile may help with the recruitment of patients for trials of targeted therapies
    • …
    corecore