447 research outputs found

    Locality in Theory Space

    Get PDF
    Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in "theory space", four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3: version accepted by JHE

    Stealth Supersymmetry

    Full text link
    We present a broad class of supersymmetric models that preserve R-parity but lack missing energy signatures. These models have new light particles with weak-scale supersymmetric masses that feel SUSY breaking only through couplings to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson pairs, with small mass splittings and hence small phase space for decays carrying away invisible energy. The simplest scenario has low-scale SUSY breaking, with missing energy only from soft gravitinos. This scenario is natural, lacks artificial tunings to produce a squeezed spectrum, and is consistent with gauge coupling unification. The resulting collider signals will be jet-rich events containing false resonances that could resemble signatures of R-parity violation. We discuss several concrete examples of the general idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Jet Dipolarity: Top Tagging with Color Flow

    Get PDF
    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version

    Dark Matter from Minimal Flavor Violation

    Full text link
    We consider theories of flavored dark matter, in which the dark matter particle is part of a multiplet transforming nontrivially under the flavor group of the Standard Model in a manner consistent with the principle of Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the lightest state for a large number of flavor multiplets. If neutral, this particle is an excellent dark matter candidate. Furthermore, MFV implies specific patterns of mass splittings among the flavors of dark matter and governs the structure of the couplings between dark matter and ordinary particles, leading to a rich and predictive cosmology and phenomenology. We present an illustrative phenomenological study of an effective theory of a flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider analysis, conclusions unchange

    Topological Interactions in Warped Extra Dimensions

    Get PDF
    Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.Comment: 40 pages, 10 figures, 2 tables; modifications in the KK parity discussion, final version at JHE

    Exploring the Higgs Portal with 10/fb at the LHC

    Full text link
    We consider the impact of new exotic colored and/or charged matter interacting through the Higgs portal on Standard Model Higgs boson searches at the LHC. Such Higgs portal couplings can induce shifts in the effective Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs production and decay patterns. We consider two possible interpretations of the current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which is underproduced due to the suppression of its gluon fusion production cross section. We first perform a model independent analysis of the allowed sizes of such shifts in light of the current LHC data. As a class of possible candidates for new physics which gives rise to such shifts, we investigate the effects of new scalar multiplets charged under the Standard Model gauge symmetries. We determine the scalar parameter space that is allowed by current LHC Higgs searches, and compare with complementary LHC searches that are sensitive to the direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form factor, numerical results updated with Moriond 2012 data, conclusions unchange

    TeV scale mirage mediation in NMSSM

    Full text link
    We study the next-to-minimal supersymmetric standard model. We consider soft supersymmetry breaking parameters, which are induced by the mirage mediation mechanism of supersymmetry breaking. We concentrate on the mirage mediation, where the so-called mirage scale is the TeV scale. In this scenario, we can realize the up-type Higgs soft mass of O(200) GeV, while other masses such as gaugino masses and stop masses are heavy such as 1 TeV or more. Cancellation between the effective \mu-term and the down-type Higgs soft mass ameliorates the fine-tuning in the electroweak symmetry breaking even for \mu=O(500) GeV. The mixing between the doublet and singlet Higgs bosons is suppressed by (\lambda/\kappa)/tan\beta. Then the lightest doublet Higgs mass naturally reaches 125 GeV lifted by the new quartic coupling. The higgsino and singlino are light and their linear combination is the lightest superparticle.Comment: 24 pages, 24 figures, Numerical analysis is replaced with the version calculated by NMSSMTools. Comments and references are added on the suppressed doublet-singlet mixing and cases in which the 125 GeV boson is the 2nd lightest CP-even scalar. The version accepted by JHE

    Flavour Physics in the Soft Wall Model

    Get PDF
    We extend the description of flavour that exists in the Randall-Sundrum (RS) model to the soft wall (SW) model in which the IR brane is removed and the Higgs is free to propagate in the bulk. It is demonstrated that, like the RS model, one can generate the hierarchy of fermion masses by localising the fermions at different locations throughout the space. However, there are two significant differences. Firstly the possible fermion masses scale down, from the electroweak scale, less steeply than in the RS model and secondly there now exists a minimum fermion mass for fermions sitting towards the UV brane. With a quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude lower than the electroweak scale. We derive the gauge propagator and despite the KK masses scaling as mn2∼nm_n^2\sim n, it is demonstrated that the coefficients of four fermion operators are not divergent at tree level. FCNC's amongst kaons and leptons are considered and compared to calculations in the RS model, with a brane localised Higgs and equivalent levels of tuning. It is found that since the gauge fermion couplings are slightly more universal and the SM fermions typically sit slightly further towards the UV brane, the contributions to observables such as ϵK\epsilon_K and ΔmK\Delta m_K, from the exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3: modifications to figures 4,5 and 6. version to appear in JHE
    • …
    corecore