16 research outputs found

    Aproximacions demogràfiques per avaluar l’estat de conservació de la baldriga cendrosa Calonectris diomedea i la baldriga balear Puffinus mauretanicus: Demographic approaches for assessing the conservation status of Scopoli’s Shearwater Calonectris diomedea and the Balearic Shearwater Puffinus mauretanicus

    Get PDF
    In the north-western Mediterranean there are two breeding species of procellariforms from the Procellariidae family: Scopoli’s shearwater Calonectris diomedea and the Balearic shearwater Puffinus mauretanicus. Long-term monitoring carried out in a number of breeding colonies provides enough data to be able to assess the conservation status of both species using demographic approaches that estimate parameters such as survival, recruitment and fertility. This type of approach is recommended because it provides a reliable conservation diagnosis and knowledge of the processes that determine variations in population dynamics. Both species were found to have critically low adult survival rates, unexpected in such long-lived species, which makes these populations unviable under current conditions. This agrees with previous available information on incidental bycatch on fishing gears, and confirms that this threat, together with predation by terrestrial carnivores are of critical concern for the conservation of the populations. The fact that some of the breeding colonies did not show a declining trend indicates that several compensatory mechanisms, such as an immigration rescue effect, may be acting at local level. Nevertheless, all the evidence gathered to date suggests that these compensatory mechanisms are not permanent and that if no action is taken these populations could become extinct. In the case of Scopolis’ shearwater, the global population is much more abundant, so there may be time for mitigation actions to be undertaken. Given the size of the breeding population of Balearic shearwaters, we recommend urgent measures be carried out to reduce adult mortality in this endemic species to prevent its extinction

    Cucurbitacin I Inhibits Cell Motility by Indirectly Interfering with Actin Dynamics

    Get PDF
    Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I.Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway

    Immediate vs. deferred switching from a boosted protease inhibitor (PI/r) based regimen to a Dolutegravir (DTG) based regimen in virologically suppressed patients with high cardiovascular risk or Age ≥50 years: final 96 weeks results of NEAT 022 study

    Get PDF
    Background Both immediate and deferred switching from a ritonavir-boosted protease inhibitor (PI/r)–based regimen to a dolutegravir (DTG)–based regimen may improve lipid profile. Methods European Network for AIDS Treatment 022 Study (NEAT022) is a European, open-label, randomized trial. Human immunodeficiency virus (HIV)–infected adults aged ≥50 years or with a Framingham score ≥10% were eligible if HIV RNA was <50 copies/mL. Patients were randomized to switch from PI/r to DTG immediately (DTG-I) or to deferred switch at week 48 (DTG-D). Week 96 endpoints were proportion of patients with HIV RNA <50 copies/mL, percentage change of lipid fractions, and adverse events (AEs). Results Four hundred fifteen patients were randomized: 205 to DTG-I and 210 DTG-D. The primary objective of noninferiority at week 48 was met. At week 96, treatment success rate was 92.2% in the DTG-I arm and 87% in the DTG-D arm (difference, 5.2% [95% confidence interval, –.6% to 11%]). There were 5 virological failures in the DTG-I arm and 5 (1 while on PI/r and 4 after switching to DTG) in the DTG-D arm without selection of resistance mutations. There was no significant difference in terms of grade 3 or 4 AEs or treatment-modifying AEs. Total cholesterol and other lipid fractions (except high-density lipoprotein) significantly (P < .001) improved both after immediate and deferred switching to DTG overall and regardless of baseline PI/r strata. Conclusions Both immediate and deferred switching from a PI/r to a DTG regimen in virologically suppressed HIV-infected patients ≥50 years old or with a Framingham score ≥10% was highly efficacious and well tolerated, and improved the lipid profile

    ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres

    No full text
    Shelterin component TRF2 prevents ATM activation, while POT1 represses ATR signalling at telomeres. Here, we investigate the mechanism of G2/M arrest triggered by telomeres uncapped through TRF2 or POT1 inhibition in human cells. We find that telomere damage-activated ATR and ATM phosphorylate p53, as well as CHK1 and CHK2, thus activating two independent pathways to prevent progression into mitosis with uncapped telomeres. Surprisingly, telomere damage targets the CDC25C phosphatase for proteasome degradation in G2/M. CHK1/CHK2-dependent phosphorylation of CDC25C at Ser 216 is required for CDC25C nuclear export and destruction, which in turn acts to sustain the G2/M arrest elicited by TRF2- or POT1-depleted telomeres. In addition, CDC25C is transcriptionally downregulated by p53 in response to telomere damage. These mechanisms are distinct from the canonical DNA damage response to ionizing radiation, which triggers cell-cycle arrest through CDC25A destruction. Thus, dysfunctional telomeres promote ATM/ATR-dependent degradation of CDC25C phosphatase to block mitotic entry, thereby preventing telomere dysfunction-driven genomic instability. © 2012 European Molecular Biology Organization

    p53 prevents entry into mitosis with uncapped telomeres.

    Get PDF
    Telomeres are protected by capping structures consisting of core protein complexes that bind with sequence specificity to telomeric DNA. In their absence, telomeres trigger a DNA damage response, materialized in accumulation at the telomere of damage response proteins, e.g., phosphorylated histone H2AX (gammaH2AX), into telomere-dysfunction-induced foci. Telomere uncapping occurs transiently in every cell cycle in G2, following DNA replication, but little is known about how protective structures are reassembled or whether this process is controlled by the cell-cycle surveillance machinery. Here, we report that telomere capping is monitored at the G2/M transition by the p53/p21 damage response pathway. Unlike their wild-type counterparts, human and mouse cells lacking p53 or p21 progress into mitosis prematurely with persisting uncapped telomeres. Furthermore, artificially uncapped telomeres delay mitotic entry in a p53- and p21-dependent manner. Uncapped telomeres that persist in mitotic p53-deficient cells are shorter than average and religate to generate end-to-end fusions. These results suggest that a p53-dependent pathway monitors telomere capping after DNA replication and delays G2/M progression in the presence of unprotected telomeres. This mechanism maintains a cell-cycle stage conducive for capping reactions and prevents progression into stages during which uncapped telomeres are prone to deleterious end fusions

    BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping.

    No full text
    The tumor suppressor protein BRCA2 is a key component of the homologous recombination pathway of DNA repair, acting as the loader of RAD51 recombinase at sites of double-strand breaks. Here we show that BRCA2 associates with telomeres during the S and G2 phases of the cell cycle and facilitates the loading of RAD51 onto telomeres. Conditional deletion of Brca2 and inhibition of Rad51 in mouse embryonic fibroblasts (MEFs), but not inactivation of Brca1, led to shortening of telomeres and accumulation of fragmented telomeric signals--a hallmark of telomere fragility that is associated with replication defects. These findings suggest that BRCA2-mediated homologous recombination reactions contribute to the maintenance of telomere length by facilitating telomere replication and imply that BRCA2 has an essential role in maintaining telomere integrity during unchallenged cell proliferation. Mouse mammary tumors that lacked Brca2 accumulated telomere dysfunction-induced foci. Human breast tumors in which BRCA2 was mutated had shorter telomeres than those in which BRCA1 was mutated, suggesting that the genomic instability in BRCA2-deficient tumors was due in part to telomere dysfunction

    Prognostic implications of vitamin D deficiency in chronic kidney disease

    No full text
    Chronic kidney disease (CKD) is a highly prevalent disease, imposing high mortality rates worldwide, and it is closely related to cardiovascular events. Vitamin D deficiency is very prevalent in patients with CKD from the earliest stages of the disease, and it has been associated with higher mortality. In order to assess the prognostic implications of vitamin D deficiency in CKD, we undertook a literature review, searching different databases in October 2018 for publications related to vitamin D in patients with CKD and hypovitaminosis D, and not on dialysis. The main cause of death in these patients is cardiovascular disease. Vitamin D is one of the first parameters that CKD changes and has an important prognostic role in this entity. Deficient levels in blood are associated with increased cardiovascular risk and survival impacts, independently of cardiovascular disease. Treatment with paricalcitol appears to reduce this risk. However, the evidence analyzed is insufficient to establish an association between vitamin D levels and the progression of kidney disease.&nbsp
    corecore