811 research outputs found
Four-Dimensional String/String Duality
We present supersymmetric soliton solutions of the four-dimensional heterotic
string corresponding to monopoles, strings and domain walls. These solutions
admit the interpretation of a fivebrane wrapped around , or
of the toroidally compactified dimensions and are arguably exact to all
orders in . The solitonic string solution exhibits an {\it
strong/weak coupling} duality which however corresponds to an {\it
target space} duality of the fundamental string.Comment: 14 page
Phase transitions and critical behavior of black branes in canonical ensemble
We study the thermodynamics and phase structure of asymptotically flat
non-dilatonic as well as dilatonic black branes in a cavity in arbitrary
dimensions (). We consider the canonical ensemble and so the charge inside
the cavity and the temperature at the wall are fixed. We analyze the stability
of the black brane equilibrium states and derive the phase structures. For the
zero charge case we find an analog of Hawking-Page phase transition for these
black branes in arbitrary dimensions. When the charge is non-zero, we find that
below a critical value of the charge, the phase diagram has a line of
first-order phase transition in a certain range of temperatures which ends up
at a second order phase transition point (critical point) as the charge attains
the critical value. We calculate the critical exponents at that critical point.
Although our discussion is mainly concerned with the non-dilatonic branes, we
show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action
discussed, references adde
Vanishing Cosmological Constant by Gravitino-Dressed Compactification of 11D Supergravity
We consider compactifications induced by the gravitino field of eleven
dimensional supergravity. Such compactifications are not trivial in the sense
that the gravitino profiles are not related to pure bosonic ones by means of a
supersymmetry transformation. The basic property of such backgrounds is that
they admit -torsion although they have vanishing Riemann tensor. Thus,
these backgrounds may be considered also as solutions of the teleparallel
formulation of supergravity. We construct two classes of solutions, one with
both antisymmetric three-form field, gravity and gravitino and one with only
gravity and gravitino. In these classes of solutions, the internal space is a
parallelized compact manifold, so that it does not inherit any cosmological
constant to the external spacetime. The latter turns out to be flat Minkowski
in the maximally symmetric case. The elimination of the cosmological constant
in the spontaneously compactified supergravity seems to be a generic property
based on the trading of the cosmological constant for parallelizing torsion.Comment: 17 pages, no figure
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
Subtracted Geometry From Harrison Transformations
We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity
carrying three magnetic charges and one electric charge. We show that its
subtracted geometry is obtained by applying a specific SO(4,4) Harrison
transformation on the black hole. As previously noted, the resulting subtracted
geometry is a solution of the N=2 S=T=U supergravity.Comment: 11 pages main text; total 24 pages; Latex file; v2 typos corrected +
ref added; v3 results significantly strengthened, changes in section 3.1 and
appendix C, version to appear in JHE
Quantum Back Reaction to asymptotically AdS Black Holes
We analyze the effects of the back reaction due to a conformal field theory
(CFT) on a black hole spacetime with negative cosmological constant. We study
the geometry numerically obtained by taking into account the energy momentum
tensor of CFT approximated by a radiation fluid. We find a sequence of
configurations without a horizon in thermal equilibrium (CFT stars), followed
by a sequence of configurations with a horizon. We discuss the thermodynamic
properties of the system and how back reaction effects alter the space-time
structure. We also provide an interpretation of the above sequence of solutions
in terms of the AdS/CFT correspondence. The dual five-dimensional description
is given by the Karch-Randall model, in which a sequence of five-dimensional
floating black holes followed by a sequence of brane localized black holes
correspond to the above solutions.Comment: 13 pages, 10 figure
Supersymmetric geometries of IIA supergravity I
IIA supergravity backgrounds preserving one supersymmetry locally admit four
types of Killing spinors distinguished by the orbits of on the
space of spinors. We solve the Killing spinor equations of IIA supergravity
with and without cosmological constant for Killing spinors representing two of
these orbits, with isotropy groups and .
In both cases, we identify the geometry of spacetime and express the fluxes in
terms of the geometry. We find that the geometric constraints of backgrounds
with a invariant Killing spinor are identical to
those found for heterotic backgrounds preserving one supersymmetry.Comment: 21 page
Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory
We investigate the mapping of conformal correlators and of their anomalies
from configuration to momentum space for general dimensions, focusing on the
anomalous correlators , - involving the energy-momentum tensor
with a vector or a scalar operator () - and the 3-graviton vertex
. We compute the , and one-loop vertex functions in
dimensional regularization for free field theories involving conformal scalar,
fermion and vector fields. Since there are only one or two independent tensor
structures solving all the conformal Ward identities for the or
vertex functions respectively, and three independent tensor structures for the
vertex, and the coefficients of these tensors are known for free fields,
it is possible to identify the corresponding tensors in momentum space from the
computation of the correlators for free fields. This works in general
dimensions for and correlators, but only in 4 dimensions for ,
since vector fields are conformal only in . In this way the general
solution of the Ward identities including anomalous ones for these correlators
in (Euclidean) position space, found by Osborn and Petkou is mapped to the
ordinary diagrammatic one in momentum space. We give simplified expressions of
all these correlators in configuration space which are explicitly Fourier
integrable and provide a diagrammatic interpretation of all the contact terms
arising when two or more of the points coincide. We discuss how the anomalies
arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde
Branes and fluxes in special holonomy manifolds and cascading field theories
We conduct a study of holographic RG flows whose UV is a theory in 2+1
dimensions decoupled from gravity, and the IR is the N=6,8 superconformal fixed
point of ABJM. The solutions we consider are constructed by warping the
M-theory background whose eight spatial dimensions are manifolds of special
holonomies sp(1) times sp(1) and spin(7). Our main example for the spin(7)
holonomy manifold is the A8 geometry originally constructed by Cvetic, Gibbons,
Lu, and Pope. On the gravity side, our constructions generalize the earlier
construction of RG flow where the UV was N=3 Yang-Mills-Chern-Simons matter
system and are simpler in a number of ways. Through careful consideration of
Page, Maxwell, and brane charges, we identify the discrete and continuous
parameters characterizing each system. We then determine the range of the
discrete data, corresponding to the flux/rank for which the supersymmetry is
unbroken, and estimate the dynamical supersymmetry breaking scale as a function
of these data. We then point out the similarity between the physics of
supersymmetry breaking between our system and the system considered by
Maldacena and Nastase. We also describe the condition for unbroken
supersymmetry on class of construction based on a different class of spin(7)
manifolds known as B8 spaces whose IR is different from that of ABJM and
exhibit some interesting features.Comment: 51 pages, 12 figures. Update in quantization of G4 on B8 in equations
(5.12) and (5.13
Microscopic Realization of the Kerr/CFT Correspondence
Supersymmetric M/string compactifications to five dimensions contain BPS
black string solutions with magnetic graviphoton charge P and near-horizon
geometries which are quotients of AdS_3 x S^2. The holographic duals are
typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These
same 5D compactifications also contain non-BPS but extreme Kerr-Newman black
hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying
Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2,
the near-horizon geometry coincides precisely with the right-moving temperature
T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known
dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the
Kerr/CFT correspondence. Moreover, at linear order away from maximality, one
finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution
and the associated thermal CFT entropy reproduces the linearly sub-maximal
Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a
finite-temperature quotient of a warped deformation of the magnetic string
geometry. The corresponding dual deformation of the magnetic string CFT
potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by
Kerr/CFT.Comment: 18 pages, no figure
- âŠ