42 research outputs found

    Enhanced Virulence of Chlamydia muridarum Respiratory Infections in the Absence of TLR2 Activation

    Get PDF
    Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces

    Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Get PDF
    BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H) that have been shown to vary significantly in the course of infection in the murine model. METHODS: Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. RESULTS: Serovar D was both more virulent (longer duration of infection) and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions) in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10), while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p < 0.01) and heterotypic reinfection (p < 0.01) when compared to primary infection in age and conditions matched controls. CONCLUSION: Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity could in part explain the stable difference in serovar prevalence among human isolates

    The CD14 functional gene polymorphism -260 C>T is not involved in either the susceptibility to Chlamydia trachomatis infection or the development of tubal pathology

    Get PDF
    BACKGROUND: The functional polymorphism -260 C>T in the LPS sensing TLR4 co-receptor CD14 gene enhances the transcriptional activity and results in a higher CD14 receptor density. Individuals carrying the T/T genotype also have significantly higher serum levels of soluble CD14. The T allele of this polymorphism has recently been linked to Chlamydia pneumoniae infection. We investigated the role of the CD14 -260 C>T polymorphism in the susceptibility to and severity (defined as subfertility and/or tubal pathology) of C. trachomatis infection in Dutch Caucasian women. METHODS: The different CD14 -260 C>T genotypes were assessed by PCR-based RFLP analysis in three cohorts: 1) A cohort (n = 576) of women attending a STD clinic, 2) a cohort (n = 253) of women with subfertility, and 3) an ethnically matched control cohort (n = 170). The following variables were used in the analysis: In cohort 1 the CT-DNA status, CT IgG serology status, self-reported symptoms and in cohort 2, the CT IgG serology status and the tubal status at laparoscopy. RESULTS: In the control cohort the CC, CT and TT genotype distribution was: 28.2%, 48.2%, and 23.5% respectively. No differences were found in the overall prevalence of CD14 -260 genotypes (28.1%, 50.7%, and 21.2%) in cohort 1 when compared to the control cohort. Also no differences were observed in women with or without CT-DNA, with or without serological CT responses, with or without symptoms, or in combinations of these three variables. In subfertile women with tubal pathology (cohort 2, n = 50) the genotype distribution was 28.0%, 48.0%, and 24.0% and in subfertile women without tubal pathology (n = 203), 27.6%, 49.3% and 23.2%. The genotype distribution was unchanged when CT IgG status was introduced in the analyses. CONCLUSION: The CD14 -260 C>T genotype distributions were identical in all three cohorts, showing that this polymorphism is not involved in the susceptibility to or severity of sequelae of C. trachomatis infection

    A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection

    Get PDF
    International audienceAbstractSexually transmitted diseases constitute major health issues and their prevention and treatment continue to challenge the health care systems worldwide. Animal models are essential for a deeper understanding of the diseases and the development of safe and protective vaccines. Currently a good predictive non-rodent model is needed for the study of genital chlamydia in women. The pig has become an increasingly popular model for human diseases due to its close similarities to humans. The aim of this review is to compare the porcine and human female genital tract and associated immune system in the perspective of genital Chlamydia infection. The comparison of women and sows has shown that despite some gross anatomical differences, the structures and proportion of layers undergoing cyclic alterations are very similar. Reproductive hormonal cycles are closely related, only showing a slight difference in cycle length and source of luteolysing hormone. The epithelium and functional layers of the endometrium show similar cyclic changes. The immune system in pigs is very similar to that of humans, even though pigs have a higher percentage of CD4+/CD8+ double positive T cells. The genital immune system is also very similar in terms of the cyclic fluctuations in the mucosal antibody levels, but differs slightly regarding immune cell infiltration in the genital mucosa - predominantly due to the influx of neutrophils in the porcine endometrium during estrus. The vaginal flora in GΓΆttingen Minipigs is not dominated by lactobacilli as in humans. The vaginal pH is around 7 in GΓΆttingen Minipigs, compared to the more acidic vaginal pH around 3.5–5 in women. This review reveals important similarities between the human and porcine female reproductive tracts and proposes the pig as an advantageous supplementary model of human genital Chlamydia infection

    Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Get PDF
    Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNΞ³-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development

    BCL-6 a possible missing link for anti-inflammatory PPAR-delta signalling in pancreatic beta cells

    No full text
    AIMS/HYPOTHESIS: Inflammatory mediators contribute to pancreatic beta cell death in type 1 diabetes. Beta cells respond to cytokine exposure by activating gene networks that alter cellular metabolism, induce chemokine release (thereby increasing insulitis), and cause apoptosis. We have previously shown by microarray analysis that exposure of INS-1E cells to IL-1beta + IFN-gamma induces the transcription factor peroxisome proliferator-activated receptor (Ppar)-delta and several of its target genes. PPAR-delta controls cellular lipid metabolism and is a major regulator of inflammatory responses. We therefore examined the role of PPAR-delta in cytokine-treated beta cells. MATERIALS AND METHODS: Primary beta cells that had been purified by fluorescence-activated cell sorting and INS-1E cells were cultured in the presence of the cytokines TNF-alpha, IL-1beta, or IL-1beta + IFN-gamma, or the synthetic PPAR-delta agonist GW501516. Gene expression was analysed by real-time PCR. PPAR-delta, monocyte chemoattractant protein (MCP-1, now known as CCL2) promoter and NF-kappaB activity were determined by luciferase reporter assays. RESULTS: Exposure of primary beta cells or INS-1E cells to cytokines induced Ppar-delta mRNA expression and PPAR-delta-dependent CD36, lipoprotein lipase, acyl CoA synthetase and adipophilin mRNAs. Cytokines and the PPAR-delta agonist GW501516 also activated a PPAR-delta response element reporter in beta cells. Unlike immune cells, neither INS-1E nor beta cells expressed the transcriptional repressor B-cell lymphoma-6 (BCL-6). As a consequence, PPAR-delta activation by GW501516 did not decrease cytokine-induced Mcp-1 promoter activation or mRNA expression, as reported for macrophages. Transient transfection with a BCL-6 expression vector markedly reduced Mcp-1 promoter and NF-kappaB activities in beta cells. CONCLUSIONS/INTERPRETATION: Cytokines activate the PPAR-delta gene network in beta cells. This network does not, however, regulate the pro-inflammatory response to cytokines because beta cells lack constitutive BCL-6 expression. This may render beta cells particularly susceptible to propagating inflammation in type 1 diabetes.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore