629 research outputs found

    Experimental Investigation of Reinforced Concrete T-Beams Strengthened in Shear with Externally Bonded CFRP Sheets

    Get PDF
    An experimental investigation was undertaken into the effectiveness of unanchored and anchored externally bonded (EB) U-wrapped carbon fibre reinforced polymer (CFRP) shear strengthening for reinforced concrete T-beams at a range of realistic sizes. The T-beam sizes, geometry and reinforcement were chosen to reflect existing slab-on-beam structures with low levels of transverse steel shear reinforcement. Geometrically similar reinforced concrete T-beams were tested across three sizes ranging from 360 to 720 mm in depth and with different amounts of EB CFRP shear reinforcement. The beams were subjected to three-point bending with a span to depth ratio of 3.5. All the beams failed in diagonal shear. The experimental results indicate significant variability in the capacity of unstrengthened control beams, and a number of these control beams showed greater shear capacity than their EB CFRP strengthened counterparts. Greater thicknesses of CFRP reinforcement did not lead to increased shear capacity compared with lesser thicknesses of unanchored or anchored EB CFRP, but anchored EB CFRP did lead to moderate increases in shear capacity compared to both control and unanchored EB CFRP strengthened beams.The authors gratefully acknowledge the help of the laboratory staff of University of Bath and University of Cambridge. The authors would also like to acknowledge the financial support of: the UK Engineering and Physical Sciences Research Council (under grants EPSRC EP/I018921/1 and EP/I018972/1); the Universities of Bath and Cambridge; and the project partners and sponsors – Parsons Brinckerhoff, Tony Gee and Partners LLP, Arup, Highways England, Concrete Repairs Ltd, LG Mouchel and Partners, The Concrete Society, Fyfe Europe S.A., Fibrwrap UK, Hughes Brothers and Ebor Concrete Ltd.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by ASCE

    Nudges and other moral technologies in the context of power: Assigning and accepting responsibility

    Get PDF
    Strawson argues that we should understand moral responsibility in terms of our practices of holding responsible and taking responsibility. The former covers what is commonly referred to as backward-looking responsibility , while the latter covers what is commonly referred to as forward-looking responsibility . We consider new technologies and interventions that facilitate assignment of responsibility. Assigning responsibility is best understood as the second- or third-personal analogue of taking responsibility. It establishes forward-looking responsibility. But unlike taking responsibility, it establishes forward-looking responsibility in someone else. When such assignments are accepted, they function in such a way that those to whom responsibility has been assigned face the same obligations and are susceptible to the same reactive attitudes as someone who takes responsibility. One family of interventions interests us in particular: nudges. We contend that many instances of nudging tacitly assign responsibility to nudgees for actions, values, and relationships that they might not otherwise have taken responsibility for. To the extent that nudgees tacitly accept such assignments, they become responsible for upholding norms that would otherwise have fallen under the purview of other actors. While this may be empowering in some cases, it can also function in such a way that it burdens people with more responsibility that they can (reasonably be expected to) manage

    Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis

    Get PDF
    The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    The Effects Of N, P And Crude Oil On The Decomposition Of Spartina Alterniflora Belowground Biomass

    Get PDF
    We conducted a laboratory experiment to examine how the decomposition of particulate belowground organic matter from a salt marsh is enhanced, or not, by different mixtures of crude oil, nitrogen (N), or phosphorus (P) acting individually or synergistically. The experiment was conducted in 3.8 L sampling chambers producing varying quantities of gas whose volume was used as a surrogate measure of organic decomposition under anaerobic conditions. Gas production after 28 days, from highest to lowest, was +NP = +N \u3e\u3e\u3e +P, or +oil. The gas production under either +P or +oil conditions was indistinguishable from gas production in the control chamber. Nitrogen, not phosphorus, or +NP, was the dominant factor controlling organic decomposition rates in these experiments. The implication for organic salt marsh soils is that shoreline erosion is enhanced by salt marsh oiling, presumably by its toxicity, but not by its effect on the decomposition rates of plant biomass belowground. Nutrient additions, on the other hand, may compromise the soil strength, creating a stronger disparity in soil strength between upper and lower soil layers leading to marsh loss. Nutrient amendments intended to decrease oil concentration in the marsh may not have the desired effect, and are likely to decrease soil strength, thereby enhancing marsh-to-water conversions in organic salt marsh soils

    The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    Get PDF
    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases

    Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Get PDF
    The recent availability of shale gas has led to a renewed interest in C–H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C–H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C–H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C–H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C–H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit
    • …
    corecore