5 research outputs found

    The Beta Ansatz: A Tale of Two Complex Structures

    Get PDF
    Brane tilings, sometimes called dimer models, are a class of bipartite graphs on a torus which encode the gauge theory data of four-dimensional SCFTs dual to D3-branes probing toric Calabi-Yau threefolds. An efficient way of encoding this information exploits the theory of dessin d’enfants, expressing the structure in terms of a permutation triple, which is in turn related to a Belyi pair, namely a holomorphic map from a torus to a P1 with three marked points. The procedure of a-maximization, in the context of isoradial embeddings of the dimer, also associates a complex structure to the torus, determined by the R-charges in the SCFT, which can be compared with the Belyi complex structure. Algorithms for the explicit construction of the Belyi pairs are described in detail. In the case of orbifolds, these algorithms are related to the construction of covers of elliptic curves, which exploits the properties of Weierstraß elliptic functions. We present a counter example to a previous conjecture identifying the complex structure of the Belyi curve to the complex structure associated with R-charges

    Construction et classification de certaines solutions algébriques des systèmes de Garnier

    No full text
    22 pagesInternational audienceIn this paper, we classify all (complete) non elementary algebraic solutions of Garnier systems that can be constructed by Kitaev's method: they are deduced from isomonodromic deformations defined by pulling back a given fuchsian equation E by a family of ramified covers. We first introduce orbifold structures associated to a fuchsian equation. This allow to get a refined version of Riemann-Hurwitz formula and then to promtly deduce that E is hypergeometric. Then, we can bound exponents and degree of the pull-back maps and further list all possible ramification cases. This generalizes a result due to C. Doran for the Painleve VI case. We explicitely construct one of these solutions
    corecore