78 research outputs found

    An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration (TFF) using ultrafiltration membranes

    Get PDF
    The availability of material for experimental studies is a key constraint in the development of full-scale bioprocesses. This is especially true for the later stages in a bioprocess sequence such as purification and formulation, where the product is at a relatively high concentration and traditional scale-down models can require significant volumes. Using a combination of critical flow regime analysis, bioprocess modelling and experimentation, ultra scale-down (USD) methods can yield bioprocess information using only millilitre quantities prior to embarking on highly demanding full-scale studies. In this study the performance of a pilot-scale tangential flow filtration (TFF) system based on a membrane flat-sheet cassette using pumped flow was predicted by devising an USD device comprising a stirred cell using a rotating disc. The USD device operates with just 2.1 cm2 of membrane area and for example just 1.7 mL of feed for diafiltration studies. The novel features of the design involve optimisation of the disc location and the membrane configuration to yield an approximately uniform shear rate. This is as characterised using computational fluid dynamics for a defined layer above the membrane surface. A pilot-scale TFF device operating at ~500-fold larger feed volume and membrane area was characterised in terms of the shear rate derived from flow rate-pressure drop relationships for the cassette. Good agreement was achieved between the USD and TFF devices for the flux and resistance values at equivalent average shear rates for a monoclonal antibody diafiltration stage. This article is protected by copyright. All rights reserved

    Spatial and Spectral Coherent Control with Frequency Combs

    Full text link
    Quantum coherent control (1-3) is a powerful tool for steering the outcome of quantum processes towards a desired final state, by accurate manipulation of quantum interference between multiple pathways. Although coherent control techniques have found applications in many fields of science (4-9), the possibilities for spatial and high-resolution frequency control have remained limited. Here, we show that the use of counter-propagating broadband pulses enables the generation of fully controlled spatial excitation patterns. This spatial control approach also provides decoherence reduction, which allows the use of the high frequency resolution of an optical frequency comb (10,11). We exploit the counter-propagating geometry to perform spatially selective excitation of individual species in a multi-component gas mixture, as well as frequency determination of hyperfine constants of atomic rubidium with unprecedented accuracy. The combination of spectral and spatial coherent control adds a new dimension to coherent control with applications in e.g nonlinear spectroscopy, microscopy and high-precision frequency metrology.Comment: 12 page

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link

    Improvement of bovine ß-lactoglobulin production and secretion by Lactococcus lactis

    No full text
    The stabilizing effects of staphylococcal nuclease (Nuc) and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS) on the production of a model food allergen, bovine ß-lactoglobulin (BLG), in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG) results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (~10- and 4-fold higher than BLG and Nuc-BLG, respectively). Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at ~8 ”g/ml (~2-fold higher than Nuc-BLG). In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy
    • 

    corecore