Quantum coherent control (1-3) is a powerful tool for steering the outcome of
quantum processes towards a desired final state, by accurate manipulation of
quantum interference between multiple pathways. Although coherent control
techniques have found applications in many fields of science (4-9), the
possibilities for spatial and high-resolution frequency control have remained
limited. Here, we show that the use of counter-propagating broadband pulses
enables the generation of fully controlled spatial excitation patterns. This
spatial control approach also provides decoherence reduction, which allows the
use of the high frequency resolution of an optical frequency comb (10,11). We
exploit the counter-propagating geometry to perform spatially selective
excitation of individual species in a multi-component gas mixture, as well as
frequency determination of hyperfine constants of atomic rubidium with
unprecedented accuracy. The combination of spectral and spatial coherent
control adds a new dimension to coherent control with applications in e.g
nonlinear spectroscopy, microscopy and high-precision frequency metrology.Comment: 12 page