203 research outputs found

    Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients

    Get PDF
    Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. While most PD cases are idiopathic, the known genetic causes of PD are useful to understand common disease mechanisms. Recent data suggests that autophagy is regulated by protein acetylation mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities. The changes in histone acetylation reported to be involved in PD pathogenesis have prompted this investigation of protein acetylation and HAT and HDAC activities in both idiopathic PD and G2019S leucine-rich repeat kinase 2 (LRRK2) cell cultures. Fibroblasts from PD patients (with or without the G2019S LRRK2 mutation) and control subjects were used to assess the different phenotypes between idiopathic and genetic PD. G2019S LRRK2 mutation displays increased mitophagy due to the activation of class III HDACs whereas idiopathic PD exhibits downregulation of clearance of defective mitochondria. This reduction of mitophagy is accompanied by more reactive oxygen species (ROS). In parallel, the acetylation protein levels of idiopathic and genetic individuals are different due to an upregulation in class I and II HDACs. Despite this upregulation, the total HDAC activity is decreased in idiopathic PD and the total HAT activity does not significantly vary. Mitophagy upregulation is beneficial for reducing the ROS-induced harm in genetic PD. The defective mitophagy in idiopathic PD is inherent to the decrease in class III HDACs. Thus, there is an imbalance between total HATs and HDACs activities in idiopathic PD, which increases cell death. The inhibition of HATs in idiopathic PD cells displays a cytoprotective effect

    Efecto inmediato de la auto-liberación miofascial en la superficie plantar sobre la musculatura isquiosural en futbolistas

    Get PDF
    Adhesions in certain muscle areas generate tension in other muscles of the same muscle chain. The aim of the study is to test the immediate effect of the “Self-myofascial release” (SMR) with the golf ball technique on the plantar fascia in federated sportsmen of "Football 11" (FU) and "Futsal" (FS) and its influence on hamstring musculature. Besides, the differences between each modality have been analysed. The design is of the longitudinal experimental type, with a sample of 20 federated sportsmen. The results show significant improvement in the length reached in the “Sit and Reach Test” (SRT) after the SMR between "Control Group" (GC) and "Experimental Group"(GE). There are no significant differences between modalities. It is therefore concluded that there is an immediate effect of SMR with the golf ball technique on the plantar fascia over the hamstring muscle. There are no significant differences between modalities.Las adherencias en ciertas zonas musculares generan tensiones en otras musculaturas de la misma cadena muscular. El objetivo del estudio es probar el efecto inmediato de la “Auto-liberación Miofascial” (SMR) con la técnica de pelota de golf en la fascia plantar en deportistas federados de “Fútbol 11” (FU) y “Fútbol Sala” (FS) y su incidencia sobre la musculatura isquiosural. Además, se analizó las diferencias entre cada modalidad. El diseño es de tipo experimental longitudinal, con una muestra de 20 deportistas federados. Los resultados muestran una mejora en la longitud alcanzada en el “Test Sit and Reach” (SRT) de forma significativa la SMR entre “Grupo Control” (GC) y “Grupo Experimental” (GE). Entre modalidades no se aprecian diferencias significativas. Se concluye que existe un efecto inmediato de la SMR con la técnica de pelota de golf en la fascia plantar sobre la musculatura isquiosural. No existiendo diferencias significativas entre modalidades

    Reading the Complex Skipper Butterfly Fauna of One Tropical Place

    Get PDF
    BACKGROUND: An intense, 30-year, ongoing biodiversity inventory of Lepidoptera, together with their food plants and parasitoids, is centered on the rearing of wild-caught caterpillars in the 120,000 terrestrial hectares of dry, rain, and cloud forest of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica. Since 2003, DNA barcoding of all species has aided their identification and discovery. We summarize the process and results for a large set of the species of two speciose subfamilies of ACG skipper butterflies (Hesperiidae) and emphasize the effectiveness of barcoding these species (which are often difficult and time-consuming to identify). METHODOLOGY/PRINCIPAL FINDINGS: Adults are DNA barcoded by the Biodiversity Institute of Ontario, Guelph, Canada; and they are identified by correlating the resulting COI barcode information with more traditional information such as food plant, facies, genitalia, microlocation within ACG, caterpillar traits, etc. This process has found about 303 morphologically defined species of eudamine and pyrgine Hesperiidae breeding in ACG (about 25% of the ACG butterfly fauna) and another 44 units indicated by distinct barcodes (n = 9,094), which may be additional species and therefore may represent as much as a 13% increase. All but the members of one complex can be identified by their DNA barcodes. CONCLUSIONS/SIGNIFICANCE: Addition of DNA barcoding to the methodology greatly improved the inventory, both through faster (hence cheaper) accurate identification of the species that are distinguishable without barcoding, as well as those that require it, and through the revelation of species "hidden" within what have long been viewed as single species. Barcoding increased the recognition of species-level specialization. It would be no more appropriate to ignore barcode data in a species inventory than it would be to ignore adult genitalia variation or caterpillar ecology

    Indexes to Find the Optimal Number of Clusters in a Hierarchical Clustering

    Get PDF
    Clustering analysis is one of the most commonly used techniques for uncovering patterns in data mining. Most clustering methods require establishing the number of clusters beforehand. However, due to the size of the data currently used, predicting that value is at a high computational cost task in most cases. In this article, we present a clustering technique that avoids this requirement, using hierarchical clustering. There are many examples of this procedure in the literature, most of them focusing on the dissociative or descending subtype, while in this article we cover the agglomerative or ascending subtype. Being more expensive in computational and temporal cost, it nevertheless allows us to obtain very valuable information, regarding elements membership to clusters and their groupings, that is to say, their dendrogram. Finally, several sets of data have been used, varying their dimensionality. For each of them, we provide the calculations of internal validation indexes to test the algorithm developed, studying which of them provides better results to obtain the best possible clustering

    Molecular Characterization of Clinical Isolates of Aeromonas Species from Malaysia

    Get PDF
    Background: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity. Methodology/Principal Findings: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%). Conclusions/Significance: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 9

    A Molecular Study on the Prevalence and Virulence Potential of Aeromonas spp. Recovered from Patients Suffering from Diarrhea in Israel

    Get PDF
    Background: Species of the genus Aeromonas are native inhabitants of aquatic environments and have recently been considered emerging human pathogens. Although the gastrointestinal tract is by far the most common anatomic site from which aeromonads are recovered, their role as etiologic agents of bacterial diarrhea is still disputed. Aeromonas-associated diarrhea is a phenomenon occurring worldwide; however, the exact prevalence of Aeromonas infections on a global scale is unknown. Methodology/Principal Findings: The prevalence and virulence potential of Aeromonas in patients suffering from diarrhea in Israel was studied using molecular methods. 1,033 diarrheal stools were sampled between April and September 2010 and Aeromonas species were identified in 17 (,2%) patients by sequencing the rpoD gene. Aeromonas species identity and abundance was: A. caviae (65%), A. veronii (29%) and Aeromonas taiwanensis (6%). This is the first clinical record of A. taiwanensis as a diarrheal causative since its recent discovery from a wound infection in a patient in Taiwan. Most of the patients (77%) from which Aeromonas species were isolated were negative for any other pathogens. The patients ranged from 1 to 92 years in age. Aeromonas isolates were found to possess different virulence-associated genes: ahpB (88%), pla/ lip/lipH3/apl-1 (71%), act/hlyA/aerA (35%), alt (18%), ast (6%), fla (65%), lafA (41%), TTSS ascV (12%), TTSS ascF-ascG (12%), TTSS-dependent ADP-ribosylating toxins aexU (41%) and aexT (6%) in various combinations. Most of the identified strain

    Genetic diversity analysis of common beans based on molecular markers

    Get PDF
    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation

    Terminal Investment: Individual Reproduction of Ant Queens Increases with Age

    Get PDF
    The pattern of age-specific fecundity is a key component of the life history of organisms and shapes their ecology and evolution. In numerous animals, including humans, reproductive performance decreases with age. Here, we demonstrate that some social insect queens exhibit the opposite pattern. Egg laying rates of Cardiocondyla obscurior ant queens increased with age until death, even when the number of workers caring for them was kept constant. Cardiocondyla, and probably also other ants, therefore resemble the few select organisms with similar age-specific reproductive investment, such as corals, sturgeons, or box turtles (e.g., [1]), but they differ in being more short-lived and lacking individual, though not social, indeterminate growth. Furthermore, in contrast to most other organisms, in which average life span declines with increasing reproductive effort, queens with high egg laying rates survived as long as less fecund queens
    corecore