20 research outputs found
Recommended from our members
Physical weathering of carbonate host-rock by precipitation of soluble salts in caves: A case study in El Orón-Arco Cave (Region of Murcia, SE Spain)
The dissolution of carbonate host-rock by freshwater in phreatic or vadose conditions is the most common mechanism for the formation of caves; however, circulation of saline solutions through carbonate materials and precipitation of soluble salts may also play an important role. We studied the stable isotope composition (δ18O and δ34S of sulfate, δ18O and δD of structurally-bound gypsum hydration water and 87Sr/86Sr) and salinity of fluid inclusions in gypsum speleothems found in El Orón-Arco Cave (Cartagena, SE Spain). We suggest that physical weathering of carbonate host-rock was driven by precipitation of soluble sea-salts (mostly gypsum and halite), and this process controlled the recent geomorphological evolution of the cave. The Triassic carbonate host-rock shows clear evidence for salt weathering, including gypsum/halite infillings in cracks of the bedrock, mechanical spalling of the carbonate, and detachment of rock fragments that lead to the formation cave voids and in-situ accumulations of piles of unsorted rubble. Sulfur and oxygen isotopes of gypsum sulfate (3.0‰ < δ18O < 11.6‰ and 16.7‰ < δ34S < 20.7‰) are generally lower than modern seawater sulfate and suggest contributions from a 34S-depleted source (i.e. oxidation of pyrite). The δ18O and δD of gypsum hydration water are relatively low compared to expected values for the evaporation of pure seawater to gypsum saturation, suggesting that gypsum precipitation involved a secondary calcium-sulfate source or recycling of gypsum from previous stages, along with mixing of seawater and meteoric water seepage to the cave. The 87Sr/86Sr in gypsum shows intermediate values between modern seawater and Triassic carbonate values because of interaction between the solution and the bedrock. The salinities of the speleothem-forming solutions are relatively high (13.2 ± 3.2 wt% eq. NaCl) compared to gypsum formed from evaporated brackish solutions (i.e. ~4–8 wt% eq. NaCl) and indicate dissolution of earlier evaporites before secondary gypsum precipitation. This cave-forming mechanism, which is related to saline water circulation and precipitation of evaporitic minerals, may be common in other coastal caves
Quantification of paleo-aquifer changes using clumped isotopes in subaqueous carbonate speleothems
Here we track the water-table position and temperature of the Mount San Giovanni aquifer (Iglesiente-Sulcis mining district, SW Sardinia, Italy) during the past 600 ka by determining the ages (U-Th dating) and stable isotope compositions (δ18O, δ13C and Δ47) of a variety of subaqueous carbonate speleothems (e.g. calcite spars, dogtooth calcite crystals and calcite coatings). Clumped isotopes (Δ47) provide quantitative estimates of carbonate formation temperatures (and thus water temperatures) that are
independent of the oxygen isotope composition of water (δ18Ow). Then, the δ18Ow of the paleo-water has been reconstructed from the clumped isotope temperature (TΔ47) and the δ18O of the carbonate (δ18Oc). We find that high-temperature calcite spars formed already before 600 ka at temperatures above ~120 oC. Lower-temperature spars (~70 oC) precipitated at ~400 ka, and cold-water subaqueous speleothems (~10-20 oC) formed in perched ponds at different levels of the karst systems between 410 ka and 110 ka, while coeval precipitation of subaerial flowstones occurred in the upper
levels of the shallower caves until 82 ka. We infer that the groundwater level dropped by ~120 m from ~400 to ~250 ka, with a relatively rapid rate of ~0.8 mm/y. Considering the tectonic stability of Sardinia during the Quaternary, this high rate derives from climate driven geomorphological processes at the surface rather than tectonic uplifting. The δ18O values of the paleo-aquifer water range from -6.0±0.7 ‰ during MIS 5c, and similar to modern cave water values (-5.1 ‰), to -7.7±0.4 ‰ during the colder MIS 8. These values indicate that the groundwater reflected the δ18O signal of meteoric water, with no significant contributions from metasomatism and metamorphic waters. The observed δ18Ow variability can be explained by glacial/interglacial paleoclimate changes affecting rainfall δ18O (and thus groundwater δ18O). We conclude that clumped isotope thermometry on subaqueous carbonate speleothems is a powerful tool for tracking paleo-aquifer temperatures and δ18Ow reconstructions.NERC NE/M003752/