267 research outputs found

    BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy

    Get PDF
    Poor data have been previously reported about the mutation rates in K-RAS, BRAF, and PIK3CA genes among patients with hepatocellular carcinoma (HCC). Here we further elucidated the role of these genes in pathogenesis of primary hepatic malignancies. Archival tumour tissue from 65 HCC patients originating from South Italy were screened for mutations in these candidate genes by direct sequencing. Overall, oncogenic mutations were detected in 15 (23%) patients for BRAF gene, 18 (28%) for PIK3CA gene, and 1 (2%) for K-RAS gene. Using statistical analysis, BRAF mutations were significantly correlated with the presence of either multiple HCC nodules (P=0.021) or higher proliferation rates (P=0.034). Although further extensive screenings are awaited in HCC patients among different populations, our findings clearly indicated that mutational activation of both BRAF and PIK3CA genes does contribute to hepatocellular tumorigenesis at somatic level in Southern Italian population

    JC Virus Small t Antigen Binds Phosphatase PP2A and Rb Family Proteins and Is Required for Efficient Viral DNA Replication Activity

    Get PDF
    BACKGROUND: The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions

    Quality of Original and Biosimilar Epoetin Products

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Purpose To compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency. Methods Two original products, Eprex (epoetin alfa) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alfa) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency. Results Tested EPO products differed in content, isoform composition, and potency. Conclusion Of the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label

    Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    Get PDF
    Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100Β ΞΌCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70Β mg, 80 nCi of [14C]ixabepilone over 3Β h. Plasma, urine and faeces were collected up to 7Β days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities

    Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-Ξ³ and altered expression of Bcl-2/Bax

    Get PDF
    All-trans-retinoic acid and 9-cis-retinoic acid have been reported to have inhibitory effects on pancreatic adenocarcinoma cells and we have shown that this is partly due to induction of apoptosis. In this study, the mechanisms whereby 9-cis-retinoic acid induces apoptosis in these cells were investigated. An involvement of the Bcl-2 family of proteins was shown, such that 9-cis-retinoic acid causes a decrease in the Bcl-2/Bax ratio. Overexpression of Bcl-2 also resulted in inhibition of apoptosis induced by 9-cis-retinoic acid. Furthermore, two broad-range caspase inhibitors blocked DNA fragmentation induced by 9-cis-retinoic acid, but had no effect on viability defined by mitochondrial activity. Using synthetic retinoids, which bind selectively to specific retinoic acid receptor subtypes, we further established that activation of retinoic acid receptor-Ξ³ is essential for induction of apoptosis. Only pan-retinoic acid receptor and retinoic acid receptor-Ξ³ selective agonists reduced viability and a cell line expressing very low levels of retinoic acid receptor-Ξ³ is resistant to the effects of 9-cis-retinoic acid. A retinoic acid receptor-Ξ²/Ξ³ selective antagonist also suppressed the cytotoxic effects of 9-cis-retinoic acid in a dose-dependent manner. This study provides important insight into the mechanisms involved in suppression of pancreatic tumour cell growth by retinoids. Our results encourage further work evaluating the clinical use of receptor subtype selective retinoids in pancreatic carcinoma

    Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway

    Get PDF
    The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAF(V600) mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors

    BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs
    • …
    corecore