66 research outputs found

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants

    Get PDF
    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo

    Calcium and copper transport ATPases: analogies and diversities in transduction and signaling mechanisms

    Get PDF
    The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes

    Structure and mechanism of Zn^(2+)- transporting P-type ATPases

    Get PDF
    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2·P_i) of ZntA from Shigella sonnei, determined at 3.2 Å and 2.7 Å resolution, respectively. The structures reveal a similar fold to Cu^+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn^(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2·P_i state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn^(2+) release as a built-in counter ion, as has been proposed for H^+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between P_(IB)-type Zn^(2+)-ATPases and P_(III)-type H^+-ATPases and at the same time show structural features of the extracellular release pathway that resemble P_(II)-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca^(2+)-ATPase (SERCA) and Na^+, K^+-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine
    • …
    corecore